Abstract
1. Gabapentin is a novel anticonvulsant with an unknown mechanism of action. Recent homogenate binding studies with [3H]-gabapentin have suggested a structure-activity relationship similar to that shown for the amino acid transport system responsible for the uptake of large neutral amino acids (LNAA). 2. The autoradiographic binding distribution of [3H]-gabapentin in rat brain was compared with the distributions for excitatory amino acid receptor subtypes and the uptake sites for excitatory and large neutral amino acids in consecutive rat brain sections. 3. Densitometric measurement of the autoradiographic images followed by normalisation with respect to the hippocampus CA1 stratum radiatum, was carried out before comparison of each binding distribution with that of [3H]-gabapentin by linear regression analysis. The correlation coefficients observed showed no absolute correlation was observed between the binding distributions of [3H]-gabapentin and those of the excitatory amino acid receptor subtypes. The acidic and large neutral amino acid uptake site distributions demonstrated a much closer correlation to the [3H]-gabapentin binding site distribution. The correlation coefficients for D-[3H]-aspartate, L-[3H]-leucine and L-[3H]-isoleucine binding site distributions were 0.76, 0.90 and 0.88 respectively. 4. Concentration-dependent inhibition by unlabelled gabapentin of autoradiographic binding of L-[3H]-leucine and L-[3H]-isoleucine was observed, with non-specific binding levels being reached at concentrations between 10 and 100 microM. 5. Excitotoxic quinolinic acid lesion studies in rat brain caudate putamen and autoradiography were carried out for the amino acid uptake sites mentioned above. The resulting glial infiltration of the lesioned areas was visualized by autoradiography using the peripheral benzodiazepine receptor specific ligand [3H]-PK11195. A significant decrease in binding density in the lesioned area compared with sham-operated animals was observed for D-[3H]-aspartate, L-[3H]-leucine, L-[3H]-isoleucine and [3H]-gabapentin, whilst [3H]-PK11195 showed a significant increase in binding density indicative of glial infiltration into the lesioned area. These results suggest that the gabapentin binding site and the acidic and LNAA uptake site may be present on cell bodies of a neuronal population of cells. 6. From these studies it appears that [3H]-gabapentin, L-[3H]-leucine and L-[3H]-isoleucine bind to the same site in rat brain. The inhibition of [3H]-gabapentin binding by the LNAA uptake system-specific ligand, BCH, suggests that [3H]-gabapentin may label this uptake site, termed system-L. Conversely these ligands could be labelling a novel site that coincidentally has a similar structure-activity relationship to this uptake site. These results suggest a novel mechanistically relevant site of action for gabapentin and may enable further anti-epileptic agents of this type to be developed.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K. J., Monaghan D. T., Bridges R. J., Tavoularis A. L., Cotman C. W. Autoradiographic characterization of putative excitatory amino acid transport sites. Neuroscience. 1990;38(2):311–322. doi: 10.1016/0306-4522(90)90030-8. [DOI] [PubMed] [Google Scholar]
- Benavides J., Capdeville C., Dauphin F., Dubois A., Duverger D., Fage D., Gotti B., MacKenzie E. T., Scatton B. The quantification of brain lesions with an omega 3 site ligand: a critical analysis of animal models of cerebral ischaemia and neurodegeneration. Brain Res. 1990 Jul 9;522(2):275–289. doi: 10.1016/0006-8993(90)91472-s. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Wong E. H., Hudson A. L. Quantitative autoradiography of [3H]-MK-801 binding sites in mammalian brain. Br J Pharmacol. 1988 Apr;93(4):944–954. doi: 10.1111/j.1476-5381.1988.tb11484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bristow D. R., Bowery N. G., Woodruff G. N. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol. 1986 Jul 31;126(3):303–307. doi: 10.1016/0014-2999(86)90062-2. [DOI] [PubMed] [Google Scholar]
- Coyle J. T., Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature. 1976 Sep 16;263(5574):244–246. doi: 10.1038/263244a0. [DOI] [PubMed] [Google Scholar]
- Dubois A., Bénavidès J., Peny B., Duverger D., Fage D., Gotti B., MacKenzie E. T., Scatton B. Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Res. 1988 Mar 29;445(1):77–90. doi: 10.1016/0006-8993(88)91076-1. [DOI] [PubMed] [Google Scholar]
- Goa K. L., Sorkin E. M. Gabapentin. A review of its pharmacological properties and clinical potential in epilepsy. Drugs. 1993 Sep;46(3):409–427. doi: 10.2165/00003495-199346030-00007. [DOI] [PubMed] [Google Scholar]
- Harris E. W., Ganong A. H., Cotman C. W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 1984 Dec 3;323(1):132–137. doi: 10.1016/0006-8993(84)90275-0. [DOI] [PubMed] [Google Scholar]
- Hill D. R., Suman-Chauhan N., Woodruff G. N. Localization of [3H]gabapentin to a novel site in rat brain: autoradiographic studies. Eur J Pharmacol. 1993 Feb 15;244(3):303–309. doi: 10.1016/0922-4106(93)90156-4. [DOI] [PubMed] [Google Scholar]
- Maragos W. F., Penney J. B., Young A. B. Anatomic correlation of NMDA and 3H-TCP-labeled receptors in rat brain. J Neurosci. 1988 Feb;8(2):493–501. doi: 10.1523/JNEUROSCI.08-02-00493.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald J. W., Penney J. B., Johnston M. V., Young A. B. Characterization and regional distribution of strychnine-insensitive [3H]glycine binding sites in rat brain by quantitative receptor autoradiography. Neuroscience. 1990;35(3):653–668. doi: 10.1016/0306-4522(90)90336-3. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., Cotman C. W. Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci. 1985 Nov;5(11):2909–2919. doi: 10.1523/JNEUROSCI.05-11-02909.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen E. O., Drejer J., Cha J. H., Young A. B., Honoré T. Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione: comparison with (R,S)-[3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites. J Neurochem. 1990 Feb;54(2):686–695. doi: 10.1111/j.1471-4159.1990.tb01925.x. [DOI] [PubMed] [Google Scholar]
- Price G. W., Ahier R. G., Hume S. P., Myers R., Manjil L., Cremer J. E., Luthra S. K., Pascali C., Pike V., Frackowiak R. S. In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK11195 and [18F]PK14105 as markers for neuronal damage. J Neurochem. 1990 Jul;55(1):175–185. doi: 10.1111/j.1471-4159.1990.tb08836.x. [DOI] [PubMed] [Google Scholar]
- Stewart B. H., Kugler A. R., Thompson P. R., Bockbrader H. N. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res. 1993 Feb;10(2):276–281. doi: 10.1023/a:1018951214146. [DOI] [PubMed] [Google Scholar]
- Su T. Z., Lunney E., Campbell G., Oxender D. L. Transport of gabapentin, a gamma-amino acid drug, by system l alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem. 1995 May;64(5):2125–2131. doi: 10.1046/j.1471-4159.1995.64052125.x. [DOI] [PubMed] [Google Scholar]
- Suman-Chauhan N., Webdale L., Hill D. R., Woodruff G. N. Characterisation of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol. 1993 Feb 15;244(3):293–301. doi: 10.1016/0922-4106(93)90155-3. [DOI] [PubMed] [Google Scholar]
- Thurlow R. J., Brown J. P., Gee N. S., Hill D. R., Woodruff G. N. [3H]gabapentin may label a system-L-like neutral amino acid carrier in brain. Eur J Pharmacol. 1993 Nov 15;247(3):341–345. doi: 10.1016/0922-4106(93)90204-m. [DOI] [PubMed] [Google Scholar]
- Young A. B., Fagg G. E. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci. 1990 Mar;11(3):126–133. doi: 10.1016/0165-6147(90)90199-i. [DOI] [PubMed] [Google Scholar]