Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(3):720–726. doi: 10.1111/j.1476-5381.1996.tb15459.x

Mechanotransduction through the endothelial cytoskeleton: mediation of flow- but not agonist-induced EDRF release.

I R Hutcheson 1, T M Griffith 1
PMCID: PMC1909742  PMID: 8762099

Abstract

1. We have used a cascade bioassay system and isolated arterial ring preparations to investigate the contribution of the endothelial microfilament and microtubule cytoskeleton to EDRF release evoked by time-averaged shear stress and by acetylcholine in rabbit abdominal aorta. 2. Cytochalasin B (1 microM) and phalloidin (100 nM) were used to depolymerize and stabilize, respectively, F-actin microfilaments. Colchicine (500 nM) was used to inhibit tubulin dimerization and thus disrupt the microtubule network. Experiments were performed before or 1 h after administration of agents to the donor perfusate or organ bath. 3. In cascade bioassay studies, time-averaged shear stress was manipulated with dextran (1-4% w/v, 80,000 MW), to increase perfusate viscosity. EDRF release induced by increased perfusate viscosity was significantly (P < 0.01) attenuated by cytochalasin B, phalloidin and colchicine. 4. Endothelium-dependent relaxations to acetylcholine (0.01-30 microM) in cascade bioassay and in isolated aortic ring preparations were unaffected by pretreatment with any of these agents both in terms of their EC50 and maximal responses. Endothelium-independent relaxations to sodium nitroprusside (0.001-10 microM) were similarly unaffected. 5. We conclude that the endothelial F-actin microfilament and microtubule networks are involved in the mechanotransduction pathway for flow-evoked EDRF release in rabbit abdominal aorta. However, these cytoskeletal elements appear to play no role in acetylcholine-induced EDRF release in this tissue.

Full text

PDF
720

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan J. A., Siegel G. Blood vessel wall matrix flow sensor: evidence and speculation. Blood Vessels. 1991;28(6):552–556. doi: 10.1159/000158903. [DOI] [PubMed] [Google Scholar]
  2. Bhagyalakshmi A., Berthiaume F., Reich K. M., Frangos J. A. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vasc Res. 1992 Nov-Dec;29(6):443–449. doi: 10.1159/000158963. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Jin H., Iida N., Brandt N. R., Zhang S. H. The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J Biol Chem. 1993 Apr 5;268(10):7290–7297. [PubMed] [Google Scholar]
  4. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  5. Cooke J. P., Rossitch E., Jr, Andon N. A., Loscalzo J., Dzau V. J. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991 Nov;88(5):1663–1671. doi: 10.1172/JCI115481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies P. F., Robotewskyj A., Griem M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest. 1994 May;93(5):2031–2038. doi: 10.1172/JCI117197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies P. F., Tripathi S. C. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993 Feb;72(2):239–245. doi: 10.1161/01.res.72.2.239. [DOI] [PubMed] [Google Scholar]
  8. Dewey C. F., Jr, Bussolari S. R., Gimbrone M. A., Jr, Davies P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981 Aug;103(3):177–185. doi: 10.1115/1.3138276. [DOI] [PubMed] [Google Scholar]
  9. Diamond S. L., Sachs F., Sigurdson W. J. Mechanically induced calcium mobilization in cultured endothelial cells is dependent on actin and phospholipase. Arterioscler Thromb. 1994 Dec;14(12):2000–2006. doi: 10.1161/01.atv.14.12.2000. [DOI] [PubMed] [Google Scholar]
  10. Franke R. P., Gräfe M., Schnittler H., Seiffge D., Mittermayer C., Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature. 1984 Feb 16;307(5952):648–649. doi: 10.1038/307648a0. [DOI] [PubMed] [Google Scholar]
  11. Girard P. R., Nerem R. M. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol. 1995 Apr;163(1):179–193. doi: 10.1002/jcp.1041630121. [DOI] [PubMed] [Google Scholar]
  12. Goldschmidt-Clermont P. J., Machesky L. M., Baldassare J. J., Pollard T. D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science. 1990 Mar 30;247(4950):1575–1578. doi: 10.1126/science.2157283. [DOI] [PubMed] [Google Scholar]
  13. Gottlieb A. I., Langille B. L., Wong M. K., Kim D. W. Structure and function of the endothelial cytoskeleton. Lab Invest. 1991 Aug;65(2):123–137. [PubMed] [Google Scholar]
  14. Griffith T. M. Modulation of blood flow and tissue perfusion by endothelium-derived relaxing factor. Exp Physiol. 1994 Nov;79(6):873–913. doi: 10.1113/expphysiol.1994.sp003816. [DOI] [PubMed] [Google Scholar]
  15. Hecker M., Mülsch A., Bassenge E., Busse R. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol. 1993 Sep;265(3 Pt 2):H828–H833. doi: 10.1152/ajpheart.1993.265.3.H828. [DOI] [PubMed] [Google Scholar]
  16. Horvath A. R., Elmore M. A., Kellie S. Differential tyrosine-specific phosphorylation of integrin in Rous sarcoma virus transformed cells with differing transformed phenotypes. Oncogene. 1990 Sep;5(9):1349–1357. [PubMed] [Google Scholar]
  17. Hutcheson I. R., Griffith T. M. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. Am J Physiol. 1994 Feb;266(2 Pt 2):H590–H596. doi: 10.1152/ajpheart.1994.266.2.H590. [DOI] [PubMed] [Google Scholar]
  18. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991 Oct;3(5):841–848. doi: 10.1016/0955-0674(91)90058-7. [DOI] [PubMed] [Google Scholar]
  19. Kim D. W., Langille B. L., Wong M. K., Gotlieb A. I. Patterns of endothelial microfilament distribution in the rabbit aorta in situ. Circ Res. 1989 Jan;64(1):21–31. doi: 10.1161/01.res.64.1.21. [DOI] [PubMed] [Google Scholar]
  20. Langille B. L., Adamson S. L. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res. 1981 Apr;48(4):481–488. doi: 10.1161/01.res.48.4.481. [DOI] [PubMed] [Google Scholar]
  21. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  22. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  23. Morita T., Kurihara H., Maemura K., Yoshizumi M., Nagai R., Yazaki Y. Role of Ca2+ and protein kinase C in shear stress-induced actin depolymerization and endothelin 1 gene expression. Circ Res. 1994 Oct;75(4):630–636. doi: 10.1161/01.res.75.4.630. [DOI] [PubMed] [Google Scholar]
  24. Morita T., Kurihara H., Maemura K., Yoshizumi M., Yazaki Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest. 1993 Oct;92(4):1706–1712. doi: 10.1172/JCI116757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nollert M. U., Eskin S. G., McIntire L. V. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem Biophys Res Commun. 1990 Jul 16;170(1):281–287. doi: 10.1016/0006-291x(90)91271-s. [DOI] [PubMed] [Google Scholar]
  26. Oike M., Schwarz G., Sehrer J., Jost M., Gerke V., Weber K., Droogmans G., Nilius B. Cytoskeletal modulation of the response to mechanical stimulation in human vascular endothelial cells. Pflugers Arch. 1994 Oct;428(5-6):569–576. doi: 10.1007/BF00374579. [DOI] [PubMed] [Google Scholar]
  27. Olesen S. P., Clapham D. E., Davies P. F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988 Jan 14;331(6152):168–170. doi: 10.1038/331168a0. [DOI] [PubMed] [Google Scholar]
  28. Rasenick M. M., Wang N., Yan K. Specific associations between tubulin and G proteins: participation of cytoskeletal elements in cellular signal transduction. Adv Second Messenger Phosphoprotein Res. 1990;24:381–386. [PubMed] [Google Scholar]
  29. Schilling W. P., Cabello O. A., Rajan L. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J. 1992 Jun 1;284(Pt 2):521–530. doi: 10.1042/bj2840521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suárez J., Rubio R. Regulation of glycolytic flux by coronary flow in guinea pig heart. Role of vascular endothelial cell glycocalyx. Am J Physiol. 1991 Dec;261(6 Pt 2):H1994–H2000. doi: 10.1152/ajpheart.1991.261.6.H1994. [DOI] [PubMed] [Google Scholar]
  31. Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  33. Wechezak A. R., Wight T. N., Viggers R. F., Sauvage L. R. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J Cell Physiol. 1989 Apr;139(1):136–146. doi: 10.1002/jcp.1041390120. [DOI] [PubMed] [Google Scholar]
  34. Ziegelstein R. C., Cheng L., Blank P. S., Spurgeon H. A., Lakatta E. G., Hansford R. G., Capogrossi M. C. Modulation of calcium homeostasis in cultured rat aortic endothelial cells by intracellular acidification. Am J Physiol. 1993 Oct;265(4 Pt 2):H1424–H1433. doi: 10.1152/ajpheart.1993.265.4.H1424. [DOI] [PubMed] [Google Scholar]
  35. Ziegelstein R. C., Cheng L., Capogrossi M. C. Flow-dependent cytosolic acidification of vascular endothelial cells. Science. 1992 Oct 23;258(5082):656–659. doi: 10.1126/science.1329207. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES