Abstract
1. The present study has examined the effect of (+)-WAY 100135, a selective antagonist of 5-HT1A receptors, and ketanserin, an antagonist of 5-HT2 receptors, on the urinary excretion of Na+, K+, dopamine, 5-hydroxytryptamine (5-HT) and their metabolites in rats treated with the selective type A monoamine oxidase (MAO-A) inhibitor, Ro 41-1049 (15 mg kg-1 day-1) in conditions of normal sodium (NS) and high sodium (HS; 1.0% NaCl in drinking water) intake. 2. Male Wistar rats were placed in metabolic cages and were given tap water (NS diet) in the first 4 days of the study and then challenged to a HS diet for another 7 days. Ro 41-1049 was given in drinking water only in the last 3 days of the HS diet, whereas (+)-WAY 100135 (5 and 10 mg kg-1 day-1, s.c.) or ketanserin (2 mg kg-1 day-1, s.c.) were administered in the last 4 days of the HS intake period. 3. Daily urinary excretion (in nmol kg-1 day-1) of dopamine (82 +/- 2), 3,4-dihydroxyphenylacetic acid (DOPAC; 198 +/- 9), homovanillic acid (HVA; 915 +/- 47), 5-HT (586 +/- 37) and 5-hydroxyindoleacetic acid (5-HIAA; 1035 +/- 64) in the HS intake period was similar or higher than that in NS diet (dopamine = 68 +/- 2, DOPAC = 197 +/- 4, HVA = 923 +/- 42, 5-HT = 539 +/- 132, 5-HIAA = 1286 +/- 95). The administration of Ro 41-1049 on 3 consecutive days reduced the urinary excretion of dopamine, DOPAC and HVA, respectively, by 35-51% (P < 0.05), 73-85% (P < 0.05) and 59-66% (P < 0.05); the urinary excretion of 5-HT increased 2 fold (P < 0.01) and the levels of 5-HIAA were reduced by 39-77% (P < 0.05). 4. During HS intake (7 days), daily urinary excretion of Na+ increased 5.5 fold (from 6.7 +/- 0.2 to 36.5 +/- 0.9 mmol kg-1 day-1), without changes in the urinary excretion of K+ (from 11.2 +/- 0.2 to 11.9 +/- 0.5 mmol kg-1 day-1) and urinary osmolality (from 1083.8 +/- 26.7 to 1117.7 +/- 24.1 mOsm kg-1 H2O). MAO-A inhibition during HS intake was found to produce a 47-68% decrease in Na+ excretion (from 39.1 +/- 0.7 to 15.1 +/- 2.5 mmol kg-1 day-1, n = 4; P < 0.02) and urine volume (from 160.4 +/- 3.3 to 43.8 +/- 9.0 ml kg-1 day-1, n = 4; P < 0.02) without changes in K+ (from 11.1 +/- 0.5 to 9.2 +/- 0.6 mmol kg-1 day-1, n = 4) and creatinine (from 29.1 +/- 2.3 to 28.4 +/- 2.1 mg kg-1 day-1) excretion; urine osmolality increased 2 fold (from 936.3 +/- 40.3 to 2210.7 +/- 157.4 mOsm kg-1 H2O, n = 4; P < 0.02). Administration of (+)-WAY 100135 (5 and 10 mg kg-1 day-1), but not of ketanserin (2 mg kg-1 day-1), was found to inhibit the antinatriuretic effect induced by Ro 41-1049 during HS intake. 5. It is suggested that MAO-A inhibition during HS intake leads to an increased availability of 5-HT in renal tissues, the effect of which is a decrease in the urinary excretion of Na+, involving the activation of tubular 5-HT1A receptors.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfieri A. B., Cubeddu L. X. Effects of inhibition of serotonin synthesis on 5-hydroxyindoleacetic acid excretion, in healthy subjects. J Clin Pharmacol. 1994 Feb;34(2):153–157. doi: 10.1002/j.1552-4604.1994.tb03980.x. [DOI] [PubMed] [Google Scholar]
- Blackshear J. L., Orlandi C., Hollenberg N. K. Constrictive effect of serotonin on visible renal arteries: a pharmacoangiographic study in anesthetized dogs. J Cardiovasc Pharmacol. 1991 Jan;17(1):68–73. doi: 10.1097/00005344-199101000-00010. [DOI] [PubMed] [Google Scholar]
- Chamienia A. L., Johns E. J. Renal functional responses to the 5-HT1A receptor agonist flesinoxan: effects of controlled renal perfusion pressure. J Pharmacol Exp Ther. 1994 Apr;269(1):215–220. [PubMed] [Google Scholar]
- Collis M. G., Vanhoutte P. M. Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ Res. 1977 Dec;41(6):759–767. doi: 10.1161/01.res.41.6.759. [DOI] [PubMed] [Google Scholar]
- DAVIDSON J., SJOERDSMA A., LOOMIS L. N., UDENFRIEND S. Studies with the serotonin precursor, 5-hydroxytryptophan, in experimental animals and man. J Clin Invest. 1957 Nov;36(11):1594–1599. doi: 10.1172/JCI103558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes M. H., Soares-da-Silva P. Effects of MAO-A and MAO-B selective inhibitors Ro 41-1049 and Ro 19-6327 on the deamination of newly formed dopamine in the rat kidney. J Pharmacol Exp Ther. 1990 Dec;255(3):1309–1313. [PubMed] [Google Scholar]
- Fernandes M. H., Soares-da-Silva P. Type A and B monoamine oxidase activities in the human and rat kidney. Acta Physiol Scand. 1992 Aug;145(4):363–367. doi: 10.1111/j.1748-1716.1992.tb09376.x. [DOI] [PubMed] [Google Scholar]
- Fletcher A., Bill D. J., Bill S. J., Cliffe I. A., Dover G. M., Forster E. A., Haskins J. T., Jones D., Mansell H. L., Reilly Y. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol. 1993 Jun 24;237(2-3):283–291. doi: 10.1016/0014-2999(93)90280-u. [DOI] [PubMed] [Google Scholar]
- Itskovitz H. D., Chen Y. H., Stier C. T., Jr Reciprocal renal effects of dopamine and 5-hydroxytryptamine formed within the rat kidney. Clin Sci (Lond) 1988 Nov;75(5):503–507. doi: 10.1042/cs0750503. [DOI] [PubMed] [Google Scholar]
- Lee M. R. Dopamine and the kidney: ten years on. Clin Sci (Lond) 1993 Apr;84(4):357–375. doi: 10.1042/cs0840357. [DOI] [PubMed] [Google Scholar]
- Li Kam Wa T. C., Freestone S., Samson R. R., Johnson N. R., Lee M. R. A comparison of the renal and neuroendocrine effects of two 5-hydroxytryptamine renal prodrugs in normal man. Clin Sci (Lond) 1993 Nov;85(5):607–614. doi: 10.1042/cs0850607. [DOI] [PubMed] [Google Scholar]
- PAGE E. W., GLENDENING M. B. Production of renal cortical necrosis with serotonin (5-hydroxytryptamine); theoretical relationship to abruptio placentae. Obstet Gynecol. 1955 Jun;5(6):781–788. [PubMed] [Google Scholar]
- Pestana M., Soares-da-Silva P. Effect of type A and B monoamine oxidase selective inhibition by Ro 41-1049 and Ro 19-6327 on dopamine outflow in rat kidney slices. Br J Pharmacol. 1994 Dec;113(4):1269–1274. doi: 10.1111/j.1476-5381.1994.tb17135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RESNICK R. H., GRAY S. J. Distribution of serotonin (5-hydroxytryptamine) in the human gastrointestinal tract. Gastroenterology. 1961 Aug;41:119–121. [PubMed] [Google Scholar]
- Raymond J. R., Kim J., Beach R. E., Tisher C. C. Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am J Physiol. 1993 Jan;264(1 Pt 2):F9–19. doi: 10.1152/ajprenal.1993.264.1.F9. [DOI] [PubMed] [Google Scholar]
- Sharma A. M., Schorr U., Thiede H. M., Distler A. Effect of dietary salt restriction on urinary serotonin and 5-hydroxyindoleacetic acid excretion in man. J Hypertens. 1993 Dec;11(12):1381–1386. doi: 10.1097/00004872-199312000-00010. [DOI] [PubMed] [Google Scholar]
- Shoji T., Tamaki T., Fukui K., Iwao H., Abe Y. Renal hemodynamic responses to 5-hydroxytryptamine (5-HT): involvement of the 5-HT receptor subtypes in the canine kidney. Eur J Pharmacol. 1989 Nov 21;171(2-3):219–228. doi: 10.1016/0014-2999(89)90110-6. [DOI] [PubMed] [Google Scholar]
- Soares-da-Silva P., Fernandes M. H., Pinto-do-O P. C. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules. Br J Pharmacol. 1994 Jun;112(2):611–615. doi: 10.1111/j.1476-5381.1994.tb13118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soares-da-Silva P., Pestana M., Vieira-Coelho M. A., Fernandes M. H., Albino-Teixeira A. Assessment of renal dopaminergic system activity in the nitric oxide-deprived hypertensive rat model. Br J Pharmacol. 1995 Apr;114(7):1403–1413. doi: 10.1111/j.1476-5381.1995.tb13362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soares-da-Silva P., Pinto-do-O P. C. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation. Br J Pharmacol. 1996 Mar;117(6):1187–1192. doi: 10.1111/j.1476-5381.1996.tb16714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sole M. J., Madapallimattam A., Baines A. D. An active pathway for serotonin synthesis by renal proximal tubules. Kidney Int. 1986 Mar;29(3):689–694. doi: 10.1038/ki.1986.53. [DOI] [PubMed] [Google Scholar]
- Stier C. T., Jr, McKendall G., Itskovitz H. D. Serotonin formation in nonblood-perfused rat kidneys. J Pharmacol Exp Ther. 1984 Jan;228(1):53–56. [PubMed] [Google Scholar]
- Vieira-Coelho M. A., Fernandes M. H., Soares-da-Silva P. In vivo effects of the monoamine oxidase inhibitors Ro 41-1049 and Ro 19-6327 on the production and fate of renal dopamine. J Neural Transm Suppl. 1994;41:365–370. doi: 10.1007/978-3-7091-9324-2_48. [DOI] [PubMed] [Google Scholar]
- Wa T. C., Burns N. J., Williams B. C., Freestone S., Lee M. R. Blood and urine 5-hydroxytryptophan and 5-hydroxytryptamine levels after administration of two 5-hydroxytryptamine precursors in normal man. Br J Clin Pharmacol. 1995 Mar;39(3):327–329. doi: 10.1111/j.1365-2125.1995.tb04456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfovitz E., Grossman E., Folio C. J., Keiser H. R., Kopin I. J., Goldstein D. S. Derivation of urinary dopamine from plasma dihydroxyphenylalanine in humans. Clin Sci (Lond) 1993 May;84(5):549–557. doi: 10.1042/cs0840549. [DOI] [PubMed] [Google Scholar]
- Wright C. E., Angus J. A. Diverse vascular responses to serotonin in the conscious rabbit: effects of serotonin antagonists on renal artery spasm. J Cardiovasc Pharmacol. 1987 Oct;10(4):415–423. doi: 10.1097/00005344-198710000-00006. [DOI] [PubMed] [Google Scholar]
