Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1193–1198. doi: 10.1111/j.1476-5381.1996.tb16715.x

Antagonistic actions of renal dopamine and 5-hydroxytryptamine: endogenous 5-hydroxytryptamine, 5-HT1A receptors and antinatriuresis during high sodium intake.

P Soares-da-Silva 1, M A Vieira-Coelho 1, M Pestana 1
PMCID: PMC1909762  PMID: 8882615

Abstract

1. The present study has examined the effect of (+)-WAY 100135, a selective antagonist of 5-HT1A receptors, and ketanserin, an antagonist of 5-HT2 receptors, on the urinary excretion of Na+, K+, dopamine, 5-hydroxytryptamine (5-HT) and their metabolites in rats treated with the selective type A monoamine oxidase (MAO-A) inhibitor, Ro 41-1049 (15 mg kg-1 day-1) in conditions of normal sodium (NS) and high sodium (HS; 1.0% NaCl in drinking water) intake. 2. Male Wistar rats were placed in metabolic cages and were given tap water (NS diet) in the first 4 days of the study and then challenged to a HS diet for another 7 days. Ro 41-1049 was given in drinking water only in the last 3 days of the HS diet, whereas (+)-WAY 100135 (5 and 10 mg kg-1 day-1, s.c.) or ketanserin (2 mg kg-1 day-1, s.c.) were administered in the last 4 days of the HS intake period. 3. Daily urinary excretion (in nmol kg-1 day-1) of dopamine (82 +/- 2), 3,4-dihydroxyphenylacetic acid (DOPAC; 198 +/- 9), homovanillic acid (HVA; 915 +/- 47), 5-HT (586 +/- 37) and 5-hydroxyindoleacetic acid (5-HIAA; 1035 +/- 64) in the HS intake period was similar or higher than that in NS diet (dopamine = 68 +/- 2, DOPAC = 197 +/- 4, HVA = 923 +/- 42, 5-HT = 539 +/- 132, 5-HIAA = 1286 +/- 95). The administration of Ro 41-1049 on 3 consecutive days reduced the urinary excretion of dopamine, DOPAC and HVA, respectively, by 35-51% (P < 0.05), 73-85% (P < 0.05) and 59-66% (P < 0.05); the urinary excretion of 5-HT increased 2 fold (P < 0.01) and the levels of 5-HIAA were reduced by 39-77% (P < 0.05). 4. During HS intake (7 days), daily urinary excretion of Na+ increased 5.5 fold (from 6.7 +/- 0.2 to 36.5 +/- 0.9 mmol kg-1 day-1), without changes in the urinary excretion of K+ (from 11.2 +/- 0.2 to 11.9 +/- 0.5 mmol kg-1 day-1) and urinary osmolality (from 1083.8 +/- 26.7 to 1117.7 +/- 24.1 mOsm kg-1 H2O). MAO-A inhibition during HS intake was found to produce a 47-68% decrease in Na+ excretion (from 39.1 +/- 0.7 to 15.1 +/- 2.5 mmol kg-1 day-1, n = 4; P < 0.02) and urine volume (from 160.4 +/- 3.3 to 43.8 +/- 9.0 ml kg-1 day-1, n = 4; P < 0.02) without changes in K+ (from 11.1 +/- 0.5 to 9.2 +/- 0.6 mmol kg-1 day-1, n = 4) and creatinine (from 29.1 +/- 2.3 to 28.4 +/- 2.1 mg kg-1 day-1) excretion; urine osmolality increased 2 fold (from 936.3 +/- 40.3 to 2210.7 +/- 157.4 mOsm kg-1 H2O, n = 4; P < 0.02). Administration of (+)-WAY 100135 (5 and 10 mg kg-1 day-1), but not of ketanserin (2 mg kg-1 day-1), was found to inhibit the antinatriuretic effect induced by Ro 41-1049 during HS intake. 5. It is suggested that MAO-A inhibition during HS intake leads to an increased availability of 5-HT in renal tissues, the effect of which is a decrease in the urinary excretion of Na+, involving the activation of tubular 5-HT1A receptors.

Full text

PDF
1193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfieri A. B., Cubeddu L. X. Effects of inhibition of serotonin synthesis on 5-hydroxyindoleacetic acid excretion, in healthy subjects. J Clin Pharmacol. 1994 Feb;34(2):153–157. doi: 10.1002/j.1552-4604.1994.tb03980.x. [DOI] [PubMed] [Google Scholar]
  2. Blackshear J. L., Orlandi C., Hollenberg N. K. Constrictive effect of serotonin on visible renal arteries: a pharmacoangiographic study in anesthetized dogs. J Cardiovasc Pharmacol. 1991 Jan;17(1):68–73. doi: 10.1097/00005344-199101000-00010. [DOI] [PubMed] [Google Scholar]
  3. Chamienia A. L., Johns E. J. Renal functional responses to the 5-HT1A receptor agonist flesinoxan: effects of controlled renal perfusion pressure. J Pharmacol Exp Ther. 1994 Apr;269(1):215–220. [PubMed] [Google Scholar]
  4. Collis M. G., Vanhoutte P. M. Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ Res. 1977 Dec;41(6):759–767. doi: 10.1161/01.res.41.6.759. [DOI] [PubMed] [Google Scholar]
  5. DAVIDSON J., SJOERDSMA A., LOOMIS L. N., UDENFRIEND S. Studies with the serotonin precursor, 5-hydroxytryptophan, in experimental animals and man. J Clin Invest. 1957 Nov;36(11):1594–1599. doi: 10.1172/JCI103558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fernandes M. H., Soares-da-Silva P. Effects of MAO-A and MAO-B selective inhibitors Ro 41-1049 and Ro 19-6327 on the deamination of newly formed dopamine in the rat kidney. J Pharmacol Exp Ther. 1990 Dec;255(3):1309–1313. [PubMed] [Google Scholar]
  7. Fernandes M. H., Soares-da-Silva P. Type A and B monoamine oxidase activities in the human and rat kidney. Acta Physiol Scand. 1992 Aug;145(4):363–367. doi: 10.1111/j.1748-1716.1992.tb09376.x. [DOI] [PubMed] [Google Scholar]
  8. Fletcher A., Bill D. J., Bill S. J., Cliffe I. A., Dover G. M., Forster E. A., Haskins J. T., Jones D., Mansell H. L., Reilly Y. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol. 1993 Jun 24;237(2-3):283–291. doi: 10.1016/0014-2999(93)90280-u. [DOI] [PubMed] [Google Scholar]
  9. Itskovitz H. D., Chen Y. H., Stier C. T., Jr Reciprocal renal effects of dopamine and 5-hydroxytryptamine formed within the rat kidney. Clin Sci (Lond) 1988 Nov;75(5):503–507. doi: 10.1042/cs0750503. [DOI] [PubMed] [Google Scholar]
  10. Lee M. R. Dopamine and the kidney: ten years on. Clin Sci (Lond) 1993 Apr;84(4):357–375. doi: 10.1042/cs0840357. [DOI] [PubMed] [Google Scholar]
  11. Li Kam Wa T. C., Freestone S., Samson R. R., Johnson N. R., Lee M. R. A comparison of the renal and neuroendocrine effects of two 5-hydroxytryptamine renal prodrugs in normal man. Clin Sci (Lond) 1993 Nov;85(5):607–614. doi: 10.1042/cs0850607. [DOI] [PubMed] [Google Scholar]
  12. PAGE E. W., GLENDENING M. B. Production of renal cortical necrosis with serotonin (5-hydroxytryptamine); theoretical relationship to abruptio placentae. Obstet Gynecol. 1955 Jun;5(6):781–788. [PubMed] [Google Scholar]
  13. Pestana M., Soares-da-Silva P. Effect of type A and B monoamine oxidase selective inhibition by Ro 41-1049 and Ro 19-6327 on dopamine outflow in rat kidney slices. Br J Pharmacol. 1994 Dec;113(4):1269–1274. doi: 10.1111/j.1476-5381.1994.tb17135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RESNICK R. H., GRAY S. J. Distribution of serotonin (5-hydroxytryptamine) in the human gastrointestinal tract. Gastroenterology. 1961 Aug;41:119–121. [PubMed] [Google Scholar]
  15. Raymond J. R., Kim J., Beach R. E., Tisher C. C. Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am J Physiol. 1993 Jan;264(1 Pt 2):F9–19. doi: 10.1152/ajprenal.1993.264.1.F9. [DOI] [PubMed] [Google Scholar]
  16. Sharma A. M., Schorr U., Thiede H. M., Distler A. Effect of dietary salt restriction on urinary serotonin and 5-hydroxyindoleacetic acid excretion in man. J Hypertens. 1993 Dec;11(12):1381–1386. doi: 10.1097/00004872-199312000-00010. [DOI] [PubMed] [Google Scholar]
  17. Shoji T., Tamaki T., Fukui K., Iwao H., Abe Y. Renal hemodynamic responses to 5-hydroxytryptamine (5-HT): involvement of the 5-HT receptor subtypes in the canine kidney. Eur J Pharmacol. 1989 Nov 21;171(2-3):219–228. doi: 10.1016/0014-2999(89)90110-6. [DOI] [PubMed] [Google Scholar]
  18. Soares-da-Silva P., Fernandes M. H., Pinto-do-O P. C. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules. Br J Pharmacol. 1994 Jun;112(2):611–615. doi: 10.1111/j.1476-5381.1994.tb13118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Soares-da-Silva P., Pestana M., Vieira-Coelho M. A., Fernandes M. H., Albino-Teixeira A. Assessment of renal dopaminergic system activity in the nitric oxide-deprived hypertensive rat model. Br J Pharmacol. 1995 Apr;114(7):1403–1413. doi: 10.1111/j.1476-5381.1995.tb13362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Soares-da-Silva P., Pinto-do-O P. C. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation. Br J Pharmacol. 1996 Mar;117(6):1187–1192. doi: 10.1111/j.1476-5381.1996.tb16714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sole M. J., Madapallimattam A., Baines A. D. An active pathway for serotonin synthesis by renal proximal tubules. Kidney Int. 1986 Mar;29(3):689–694. doi: 10.1038/ki.1986.53. [DOI] [PubMed] [Google Scholar]
  22. Stier C. T., Jr, McKendall G., Itskovitz H. D. Serotonin formation in nonblood-perfused rat kidneys. J Pharmacol Exp Ther. 1984 Jan;228(1):53–56. [PubMed] [Google Scholar]
  23. Vieira-Coelho M. A., Fernandes M. H., Soares-da-Silva P. In vivo effects of the monoamine oxidase inhibitors Ro 41-1049 and Ro 19-6327 on the production and fate of renal dopamine. J Neural Transm Suppl. 1994;41:365–370. doi: 10.1007/978-3-7091-9324-2_48. [DOI] [PubMed] [Google Scholar]
  24. Wa T. C., Burns N. J., Williams B. C., Freestone S., Lee M. R. Blood and urine 5-hydroxytryptophan and 5-hydroxytryptamine levels after administration of two 5-hydroxytryptamine precursors in normal man. Br J Clin Pharmacol. 1995 Mar;39(3):327–329. doi: 10.1111/j.1365-2125.1995.tb04456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolfovitz E., Grossman E., Folio C. J., Keiser H. R., Kopin I. J., Goldstein D. S. Derivation of urinary dopamine from plasma dihydroxyphenylalanine in humans. Clin Sci (Lond) 1993 May;84(5):549–557. doi: 10.1042/cs0840549. [DOI] [PubMed] [Google Scholar]
  26. Wright C. E., Angus J. A. Diverse vascular responses to serotonin in the conscious rabbit: effects of serotonin antagonists on renal artery spasm. J Cardiovasc Pharmacol. 1987 Oct;10(4):415–423. doi: 10.1097/00005344-198710000-00006. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES