Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1139–1144. doi: 10.1111/j.1476-5381.1996.tb16708.x

Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells.

A J Dudley 1, C D Brown 1
PMCID: PMC1909765  PMID: 8882608

Abstract

1. Previous studies have shown that the weak base, cimetidine, is actively secreted by the renal proximal tubule. In this study we have examined the transport of cimetidine by renal LLC-PK1 epithelial cell monolayers. 2. In LLC-PK1 cell monolayers the basal-to-apical flux of cimetidine was significantly greater than the apical-to basal flux, consistent with net secretion of cimetidine in a basal-to-apical direction. 3. Net secretion of cimetidine was significantly (70%) reduced by the addition of either 100 microM verapamil or 100 microM nifedipine to the apical membrane. The reduction in net secretion was the result of an inhibition of basal-to-apical flux; these agents had no effect upon flux in the apical-to-basal direction. These results suggest that cimetidine secretion is mediated primarily by P-glycoprotein located in the apical membrane. In addition we found no evidence of a role for organic cation antiport in the secretion of cimetidine. 4. In the presence of an inwardly directed proton gradient across the apical membrane (pH 6.0), cimetidine secretion was significantly reduced compared to that measured at an apical pH of 7.4. The reduction in net secretion at pH 6.0 was the result of a stimulation of cimetidine uptake across the apical membrane. This pH-dependent uptake mechanism was sensitive to inhibition by DIDS (100 microM). 5. Experiments with BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) loaded monolayers demonstrated that cimetidine influx across the apical membrane was associated with proton flow into the cell and was sensitive to inhibition by DIDS. 6. These results suggest that net secretion of cimetidine across the apical membrane is a function of the relative magnitudes of cimetidine secretion mediated by P-glycoprotein and cimetidine absorption mediated by a novel proton-coupled, DIDS-sensitive transport mechanism.

Full text

PDF
1139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boom S. P., Moons M. M., Russel F. G. Renal tubular transport of cimetidine in the isolated perfused kidney of the rat. Drug Metab Dispos. 1994 Jan-Feb;22(1):148–153. [PubMed] [Google Scholar]
  2. Boom S. P., Russel F. G. Cimetidine uptake and interactions with cationic drugs in freshly isolated proximal tubular cells of the rat. J Pharmacol Exp Ther. 1993 Dec;267(3):1039–1044. [PubMed] [Google Scholar]
  3. Brändle E., Greven J. Transport of cimetidine across the basolateral membrane of rabbit kidney proximal tubules: characterization of transport mechanisms. J Pharmacol Exp Ther. 1991 Sep;258(3):1038–1045. [PubMed] [Google Scholar]
  4. Cacini W., Keller M. B., Grund V. R. Accumulation of cimetidine by kidney cortex slices. J Pharmacol Exp Ther. 1982 May;221(2):342–346. [PubMed] [Google Scholar]
  5. Dellinger M., Pressman B. C., Calderon-Higginson C., Savaraj N., Tapiero H., Kolonias D., Lampidis T. J. Structural requirements of simple organic cations for recognition by multidrug-resistant cells. Cancer Res. 1992 Nov 15;52(22):6385–6389. [PubMed] [Google Scholar]
  6. Douglas J. G. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol. 1987 Jul;253(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. [DOI] [PubMed] [Google Scholar]
  7. Dudley A. J., Brown C. D. pH-dependent transport of procainamide in cultured renal epithelial monolayers of OK cells: consistent with nonionic diffusion. Br J Pharmacol. 1995 Sep;116(1):1685–1691. doi: 10.1111/j.1476-5381.1995.tb16392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dutt A., Heath L. A., Nelson J. A. P-glycoprotein and organic cation secretion by the mammalian kidney. J Pharmacol Exp Ther. 1994 Jun;269(3):1254–1260. [PubMed] [Google Scholar]
  9. Gisclon L. G., Boyd R. A., Williams R. L., Giacomini K. M. The effect of probenecid on the renal elimination of cimetidine. Clin Pharmacol Ther. 1989 Apr;45(4):444–452. doi: 10.1038/clpt.1989.53. [DOI] [PubMed] [Google Scholar]
  10. Gottesman M. M., Pastan I. The multidrug transporter, a double-edged sword. J Biol Chem. 1988 Sep 5;263(25):12163–12166. [PubMed] [Google Scholar]
  11. Gründemann D., Gorboulev V., Gambaryan S., Veyhl M., Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994 Dec 8;372(6506):549–552. doi: 10.1038/372549a0. [DOI] [PubMed] [Google Scholar]
  12. Holohan P. D., White K. E., Sokol P. P., Rebbeor J. Photoaffinity labeling of the organic cation/H+ exchanger in renal brush border membrane vesicles. J Biol Chem. 1992 Jul 5;267(19):13513–13519. [PubMed] [Google Scholar]
  13. Horio M., Gottesman M. M., Pastan I. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3580–3584. doi: 10.1073/pnas.85.10.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horio M., Pastan I., Gottesman M. M., Handler J. S. Transepithelial transport of vinblastine by kidney-derived cell lines. Application of a new kinetic model to estimate in situ Km of the pump. Biochim Biophys Acta. 1990 Aug 24;1027(2):116–122. doi: 10.1016/0005-2736(90)90074-x. [DOI] [PubMed] [Google Scholar]
  15. Hunter J., Jepson M. A., Tsuruo T., Simmons N. L., Hirst B. H. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J Biol Chem. 1993 Jul 15;268(20):14991–14997. [PubMed] [Google Scholar]
  16. Inui K., Saito H., Hori R. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1. Biochem J. 1985 Apr 1;227(1):199–203. doi: 10.1042/bj2270199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKinney T. D., DeLeon C., Speeg K. V., Jr Organic cation uptake by a cultured renal epithelium. J Cell Physiol. 1988 Dec;137(3):513–520. doi: 10.1002/jcp.1041370317. [DOI] [PubMed] [Google Scholar]
  18. McKinney T. D., Kunnemann M. E. Cimetidine transport in rabbit renal cortical brush-border membrane vesicles. Am J Physiol. 1987 Mar;252(3 Pt 2):F525–F535. doi: 10.1152/ajprenal.1987.252.3.F525. [DOI] [PubMed] [Google Scholar]
  19. McKinney T. D., Myers P., Speeg K. V., Jr Cimetidine secretion by rabbit renal tubules in vitro. Am J Physiol. 1981 Jul;241(1):F69–F76. doi: 10.1152/ajprenal.1981.241.1.F69. [DOI] [PubMed] [Google Scholar]
  20. Nelson J. A. A physiological function for multidrug-resistant membrane glycoproteins: a hypothesis regarding the renal organic cation-secretory system. Cancer Chemother Pharmacol. 1988;22(1):92–93. doi: 10.1007/BF00254191. [DOI] [PubMed] [Google Scholar]
  21. Ott R. J., Hui A. C., Yuan G., Giacomini K. M. Organic cation transport in human renal brush-border membrane vesicles. Am J Physiol. 1991 Sep;261(3 Pt 2):F443–F451. doi: 10.1152/ajprenal.1991.261.3.F443. [DOI] [PubMed] [Google Scholar]
  22. Pan B. F., Dutt A., Nelson J. A. Enhanced transepithelial flux of cimetidine by Madin-Darby canine kidney cells overexpressing human P-glycoprotein. J Pharmacol Exp Ther. 1994 Jul;270(1):1–7. [PubMed] [Google Scholar]
  23. Pritchard J. B., Miller D. S. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993 Oct;73(4):765–796. doi: 10.1152/physrev.1993.73.4.765. [DOI] [PubMed] [Google Scholar]
  24. Simmons N. L. Tissue culture of established renal cell lines. Methods Enzymol. 1990;191:426–436. doi: 10.1016/0076-6879(90)91027-4. [DOI] [PubMed] [Google Scholar]
  25. Somogyi A., Gugler R. Clinical pharmacokinetics of cimetidine. Clin Pharmacokinet. 1983 Nov-Dec;8(6):463–495. doi: 10.2165/00003088-198308060-00001. [DOI] [PubMed] [Google Scholar]
  26. Speeg K. V., Jr, deLeon C., McGuire W. L. Uptake of the noncytotoxic transport probe procainamide in the Chinese hamster ovary model of multidrug resistance. Cancer Res. 1992 Jul 1;52(13):3539–3546. [PubMed] [Google Scholar]
  27. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  29. Ullrich K. J. Specificity of transporters for 'organic anions' and 'organic cations' in the kidney. Biochim Biophys Acta. 1994 Apr 5;1197(1):45–62. doi: 10.1016/0304-4157(94)90018-3. [DOI] [PubMed] [Google Scholar]
  30. Wright S. H., Wunz T. M., Wunz T. P. Structure and interaction of inhibitors with the TEA/H+ exchanger of rabbit renal brush border membranes. Pflugers Arch. 1995 Jan;429(3):313–324. doi: 10.1007/BF00374145. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES