Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1035–1040. doi: 10.1111/j.1476-5381.1996.tb16693.x

Evidence for mediation by endothelium-derived hyperpolarizing factor of relaxation to bradykinin in the bovine isolated coronary artery independently of voltage-operated Ca2+ channels.

G R Drummond 1, T M Cocks 1
PMCID: PMC1909771  PMID: 8882593

Abstract

1. The role of endothelium-derived hyperpolarizing factor and voltage-operated Ca2+ channels in mediating endothelium-dependent, NG-nitro-L-arginine (L-NOARG; 100 microM) -resistant relaxations to bradykinin (BK), was examined in isolated rings of endothelium-intact bovine left anterior descending coronary artery. 2. Rings of artery were contracted isometrically to approximately 40% or their respective maximum contraction to 125 mM KCl Krebs solution (KPSSmax) with the thromboxane A2-mimetic, U46619. Relaxations to BK and the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), were normalized as percentages of reversal of the initial contraction to U46619. All experiments were carried out in the presence of indomethacin (3 microM). 3. BK caused concentration-dependent relaxations [sensitivity (pEC50) 9.88 +/- 0.05; maximum relaxation (Rmax), 103.3 +/- 0.5%] in U46619-contracted rings of bovine coronary artery. L-NOARG (100 microM) caused a significant (P < 0.01) 3 fold reduction in the sensitivity to BK (pEC50, 9.27 +/- 0.11) without affecting the Rmax (101.8 +/- 2.3%). A similar, significant 3 fold reduction in sensitivity to BK with no change in Rmax was observed after treatment with oxyhaemoglobin (20 microM; pEC50, 9.18 +/- 0.13, P < 0.001) or a combination of oxyhaemoglobin (20 microM) and L-NOARG (100 microM; pEC50, 9.08 +/- 0.10, P < 0.001). Oxyhaemoglobin (20 microM) either alone or in combination with L-NOARG (100 microM) caused an approximate 600 fold decrease in the sensitivity to SNAP. 4. The L-type voltage-operated Ca2+ channel inhibitor, nifedipine (0.3 microM-3 microM), reduced the maximum contraction (Fmax) to isotonic 68 mM KCl Krebs solution (103.5 +/- 2.0% KPSSmax) by 85-90% (P < 0.001); yet, the highest concentration of nifedipine (3 microM) caused only a small but significant reduction in both the sensitivity and Fmax to U46619. By contrast, nifedipine (3 microM) had no effect on the relaxation response to BK. Furthermore, a combination of nifedipine (3 microM) and L-NOARG (100 microM) had no further inhibitory effects on relaxations to BK (pEC50, 8.79 +/- 0.10; Rmax, 101.7 +/- 2.4%) than did L-NOARG (100 microM) alone (pEC50, 9.05 +/- 0.12; Rmax, 99.62 +/- 1.19). Also, nifedipine (0.3 microM and 3 microM) had no effect on the maximum relaxation to the K+ channel opener, levcromakalim (0.3 microM). 5. In the presence of nifedipine (0.3 microM to control contractions induced by high KCl) and isotonic 68 mM KCl Krebs solution (to inhibit K+ channel activity), relaxations to BK (pEC50, 9.42 +/- 0.10; Rmax, 93.9 +/- 1.8%) were similar to those observed in normal Krebs solution (pEC50, 9.58 +/- 0.09; Rmax, 98.4 +/- 0.8%). However, in the presence of 68 mM KCl Krebs solution the inhibitory effect of L-NOARG (100 microM) on relaxations to BK (pEC50, 8.53 +/- 0.20; Rmax, 31.0 +/- 11.3%) was markedly greater than that in normal KCl Krebs solution (pEC50, 9.12 +/- 0.08; Rmax, 91.5 +/- 2.0%). Similar treatment with 68 mM KCl Krebs had no effect on relaxations to the NO donor, SNAP, yet abolished the response to the K+ channel opener, levcromakalim (0.3 microM). 6. In summary, this study has shown that (1) NO synthesis in response to BK in bovine coronary artery endothelial cells in situ is likely to be abolished by L-NOARG, (2) NO-independent relaxations to BK are markedly attenuated by 68 mM KCl-containing Krebs, which, in the absence of L-NOARG, had no effect, (3) nifedipine blocked contractions to a maximum-depolarizing stimulus (KCl) yet had no effect on NO-independent relaxations to BK, and (4) maximum relaxations to levcromakalim were abolished by 68 mM KCl Krebs but were not affected by nifedipine. Therefore, we hypothesize that if smooth muscle hyperpolarization is involved in non-NO-, endothelium-dependent relaxation in bovine coronary arteries contracted with U46619, then it can accomplish this via a mechanism which does not i

Full text

PDF
1035

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeagbo A. S., Triggle C. R. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. J Cardiovasc Pharmacol. 1993 Mar;21(3):423–429. [PubMed] [Google Scholar]
  2. Angus J. A., Brazenor R. M. Relaxation of large coronary artery by verapamil, D600, and nifedipine is constrictor selective: comparison with glyceryl trinitrate. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):321–328. doi: 10.1097/00005344-198303000-00026. [DOI] [PubMed] [Google Scholar]
  3. Chen G., Suzuki H. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. J Physiol. 1989 Mar;410:91–106. doi: 10.1113/jphysiol.1989.sp017522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cowan C. L., Palacino J. J., Najibi S., Cohen R. A. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther. 1993 Sep;266(3):1482–1489. [PubMed] [Google Scholar]
  5. Edwards G., Weston A. H. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol. 1993;33:597–637. doi: 10.1146/annurev.pa.33.040193.003121. [DOI] [PubMed] [Google Scholar]
  6. Garland C. J., Plane F., Kemp B. K., Cocks T. M. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol Sci. 1995 Jan;16(1):23–30. doi: 10.1016/s0165-6147(00)88969-5. [DOI] [PubMed] [Google Scholar]
  7. Godfraind T., Govoni S. Recent advances in the pharmacology of Ca2+ and K+ channels. Trends Pharmacol Sci. 1995 Jan;16(1):1–4. doi: 10.1016/s0165-6147(00)88961-0. [DOI] [PubMed] [Google Scholar]
  8. Holzmann S., Kukovetz W. R., Windischhofer W., Paschke E., Graier W. F. Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-L-arginine in coronary arteries. J Cardiovasc Pharmacol. 1994 May;23(5):747–756. doi: 10.1097/00005344-199405000-00009. [DOI] [PubMed] [Google Scholar]
  9. Kilpatrick E. V., Cocks T. M. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br J Pharmacol. 1994 Jun;112(2):557–565. doi: 10.1111/j.1476-5381.1994.tb13110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Komori K., Vanhoutte P. M. Endothelium-derived hyperpolarizing factor. Blood Vessels. 1990;27(2-5):238–245. doi: 10.1159/000158815. [DOI] [PubMed] [Google Scholar]
  11. Kühberger E., Kukovetz W. R., Groschner K. Cromakalim inhibits multiple mechanisms of smooth muscle activation with similar stereoselectivity. J Cardiovasc Pharmacol. 1993 Jun;21(6):947–954. doi: 10.1097/00005344-199306000-00015. [DOI] [PubMed] [Google Scholar]
  12. Loutzenhiser R., van Breemen C. Mechanism of activation of isolated rabbit aorta by PGH2 analogue U-44069. Am J Physiol. 1981 Nov;241(5):C243–C249. doi: 10.1152/ajpcell.1981.241.5.C243. [DOI] [PubMed] [Google Scholar]
  13. Martin W., Smith J. A., White D. G. The mechanisms by which haemoglobin inhibits the relaxation of rabbit aorta induced by nitrovasodilators, nitric oxide, or bovine retractor penis inhibitory factor. Br J Pharmacol. 1986 Nov;89(3):563–571. doi: 10.1111/j.1476-5381.1986.tb11157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagao T., Vanhoutte P. M. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol. 1992 Jan;445:355–367. doi: 10.1113/jphysiol.1992.sp018928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pritchard K. A., Jr, Tota R. R., Stemerman M. B., Wong P. Y. 14, 15-Epoxyeicosatrienoic acid promotes endothelial cell dependent adhesion of human monocytic tumor U937 cells. Biochem Biophys Res Commun. 1990 Feb 28;167(1):137–142. doi: 10.1016/0006-291x(90)91741-a. [DOI] [PubMed] [Google Scholar]
  17. Taylor S. G., Weston A. H. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci. 1988 Aug;9(8):272–274. doi: 10.1016/0165-6147(88)90003-x. [DOI] [PubMed] [Google Scholar]
  18. Waldron G. J., Garland C. J. Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery. Br J Pharmacol. 1994 Jul;112(3):831–836. doi: 10.1111/j.1476-5381.1994.tb13154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamagishi T., Yanagisawa T., Taira N. Activation of phospholipase C by the agonist U46619 is inhibited by cromakalim-induced hyperpolarization in porcine coronary artery. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1517–1522. doi: 10.1016/0006-291x(92)90474-y. [DOI] [PubMed] [Google Scholar]
  20. Yamagishi T., Yanagisawa T., Taira N. K+ channel openers, cromakalim and Ki4032, inhibit agonist-induced Ca2+ release in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol. 1992 Dec;346(6):691–700. doi: 10.1007/BF00168744. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES