Abstract
1. We performed experiments to examine the effects of an anti-fungal imidazole compound, econazole, on the regulation and effects of lipopolysaccharide-inducible nitric oxide synthase (iNOS) activity in rat aortic rings and cultured J774 murine macrophage cells. 2. In endothelium-intact rings of thoracic aorta, phenylephrine caused a concentration-dependent contraction with EC50 of 1.9 +/- 0.15 x 10(-8) M (n = 5). Following incubation with lipopolysaccharide (LPS, 5 micrograms ml-1) for 8 h there was a right-shift in the concentration-response curve (EC50 3.1 +/- 0.28 x 10(-7) M, P < 0.05) with a depression in the maximum contraction from 1.44 +/- 0.25 g to 0.86 +/- 0.26 g (n = 4). Co-incubation of rings with econazole (1 x 10(-5) M) partially inhibited the LPS-induced loss of reactivity to phenylephrine (EC50 6.5 +/- 0.72 x 10(-8) M) and fully inhibited the reduction in maximum tension (1.49 +/- 0.19 g; n = 5). 3. In J774 cells, incubation with LPS (10 micrograms ml-1, 24 h) resulted in significant nitrite production that was inhibited by co-incubation with econazole (IC50 5.0 +/- 0.9 x 10(-6) M; n = 5). In cells stimulated with LPS, production of L-[3H]-citrulline from L-[3H]-arginine was 6.41 +/- 0.22 pmol mg-1 protein min-1 (n = 3). This was inhibited by 92 +/- 6% by addition of NG-monomethyl-L-arginine (L-NMMA, 1 x 10(-3) M; n = 3) to the homogenate but not by econazole (1 x 10(-5) M; n = 3). In contrast pretreatment of cells with econazole (1 x 10(-5) M) markedly reduced the LPS-induced [3H]-citrulline production (0.86 +/- 0.053 pmol mg-1 protein min-1; P < 0.01; n = 3). 4. In cells treated with LPS and econazole, L-[3H]-citrulline production was restored in a concentration-dependent manner by addition of calmodulin (1 x 10(-8)-3 x 10(-7) M) with an IC50 of 4.2 +/- 0.9 x 10(-8) M. 5. We have shown that econazole inhibits the functional and biochemical activity of iNOS in rat aortic rings and cultured J774 cells. Treatment of cells with econazole renders the NO synthase functionally inactive. In econazole-treated cells enzyme activity is restored by calmodulin suggesting that econazole may inhibit the binding of this essential co-factor to the enzyme following its production. These studies may have implications for the design of novel anti-inflammatory agents working through the L-arginine-nitric oxide pathway.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
- Cho H. J., Xie Q. W., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. doi: 10.1084/jem.176.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
- Gross S. S., Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem. 1992 Dec 25;267(36):25722–25729. [PubMed] [Google Scholar]
- Hegemann L., Toso S. M., Lahijani K. I., Webster G. F., Uitto J. Direct interaction of antifungal azole-derivatives with calmodulin: a possible mechanism for their therapeutic activity. J Invest Dermatol. 1993 Mar;100(3):343–346. doi: 10.1111/1523-1747.ep12470043. [DOI] [PubMed] [Google Scholar]
- Joly G. A., Narayanan K., Griffith O. W., Kilbourn R. G. Characterization of the effects of two new arginine/citrulline analogues on constitutive and inducible nitric oxide synthases in rat aorta. Br J Pharmacol. 1995 Jun;115(3):491–497. doi: 10.1111/j.1476-5381.1995.tb16360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo P. C., Abe K. Y. Cytokine-mediated production of nitric oxide in isolated rat hepatocytes is dependent on cytochrome P-450III activity. FEBS Lett. 1995 Feb 20;360(1):10–14. doi: 10.1016/0014-5793(95)00067-j. [DOI] [PubMed] [Google Scholar]
- MacAllister R. J., Fickling S. A., Whitley G. S., Vallance P. Metabolism of methylarginines by human vasculature; implications for the regulation of nitric oxide synthesis. Br J Pharmacol. 1994 May;112(1):43–48. doi: 10.1111/j.1476-5381.1994.tb13026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Morris S. M., Jr, Billiar T. R. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. doi: 10.1152/ajpendo.1994.266.6.E829. [DOI] [PubMed] [Google Scholar]
- Palacios M., Padron J., Glaria L., Rojas A., Delgado R., Knowles R., Moncada S. Chlorpromazine inhibits both the constitutive nitric oxide synthase and the induction of nitric oxide synthase after LPS challenge. Biochem Biophys Res Commun. 1993 Oct 15;196(1):280–286. doi: 10.1006/bbrc.1993.2246. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Andrews T., Foxwell N. A., Moncada S. Glucocorticoids do not affect the induction of a novel calcium-dependent nitric oxide synthase in rabbit chondrocytes. Biochem Biophys Res Commun. 1992 Oct 15;188(1):209–215. doi: 10.1016/0006-291x(92)92371-4. [DOI] [PubMed] [Google Scholar]
- Salter M., Knowles R. G., Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett. 1991 Oct 7;291(1):145–149. doi: 10.1016/0014-5793(91)81123-p. [DOI] [PubMed] [Google Scholar]
- Slotman G. J., Burchard K. W., D'Arezzo A., Gann D. S. Ketoconazole prevents acute respiratory failure in critically ill surgical patients. J Trauma. 1988 May;28(5):648–654. doi: 10.1097/00005373-198805000-00015. [DOI] [PubMed] [Google Scholar]
- Southan G. J., Szabó C., Thiemermann C. Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol. 1995 Jan;114(2):510–516. doi: 10.1111/j.1476-5381.1995.tb13256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallance P., Moncada S. Nitric oxide--from mediator to medicines. J R Coll Physicians Lond. 1994 May-Jun;28(3):209–219. [PMC free article] [PubMed] [Google Scholar]
- Vallance P., Moncada S. Role of endogenous nitric oxide in septic shock. New Horiz. 1993 Feb;1(1):77–86. [PubMed] [Google Scholar]
- Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]
- Williams J. G., Maier R. V. Ketoconazole inhibits alveolar macrophage production of inflammatory mediators involved in acute lung injury (adult respiratory distress syndrome). Surgery. 1992 Aug;112(2):270–277. [PubMed] [Google Scholar]
- Wolff D. J., Datto G. A., Samatovicz R. A. The dual mode of inhibition of calmodulin-dependent nitric-oxide synthase by antifungal imidazole agents. J Biol Chem. 1993 May 5;268(13):9430–9436. [PubMed] [Google Scholar]
- Wolff D. J., Gribin B. J. Interferon-gamma-inducible murine macrophage nitric oxide synthase: studies on the mechanism of inhibition by imidazole agents. Arch Biochem Biophys. 1994 Jun;311(2):293–299. doi: 10.1006/abbi.1994.1240. [DOI] [PubMed] [Google Scholar]
- Yu M., Tomasa G. A double-blind, prospective, randomized trial of ketoconazole, a thromboxane synthetase inhibitor, in the prophylaxis of the adult respiratory distress syndrome. Crit Care Med. 1993 Nov;21(11):1635–1642. doi: 10.1097/00003246-199311000-00010. [DOI] [PubMed] [Google Scholar]
