Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1111–1118. doi: 10.1111/j.1476-5381.1996.tb16704.x

Potentiation by 2,2'-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor.

B F King 1, C Dacquet 1, A U Ziganshin 1, D F Weetman 1, G Burnstock 1, P M Vanhoutte 1, M Spedding 1
PMCID: PMC1909786  PMID: 8882604

Abstract

1. 2,2'-Pyridylisatogen tosylate (PIT) has been reported to be an irreversible antagonist of responses to adenosine 5'-triphosphate (ATP) at metabotropic purinoceptors (of the P2Y family) in some smooth muscles. When a recombinant P2Y1 purinoceptor (derived from chick brain) is expressed in Xenopus oocytes, ATP and 2-methylthioATP (2-MeSATP) evoke calcium-activated chloride currents (ICl,Ca) in a concentration-dependent manner. The effects of PIT on these agonist responses were examined at this cloned P2Y purinoceptor. 2. PIT (0.1-100 microM) failed to stimulate P2Y1 purinoceptors directly but, over a narrow concentration range (0.1-3 microM), caused a time-dependent potentiation (2-5 fold) of responses to ATP. The potentiation of ATP-responses by PIT was not caused by inhibition of oocyte ecto-ATPase. At high concentrations (3-100 microM), PIT irreversibly inhibited responses to ATP with a IC50 value of 13 +/- 9 microM (pKB = 4.88 +/- 0.22; n = 3). PIT failed to potentiate inward currents evoked by 2-MeSATP and only inhibited the responses to this agonist in an irreversible manner. 3. Known P2 purinoceptor antagonists were tested for their ability to potentiate ATP-responses at the chick P2Y1 purinoceptor. Suramin (IC50 = 230 +/- 80 nM; n = 5) and Reactive blue-2 (IC50 = 580 +/- 130 nM; n = 6) reversibly inhibited but did not potentiate ATP-responses. Coomassie brilliant blue-G (0.1-3 microM) potentiated ATP-responses in three experiments, while higher concentrations (3-100 microM) irreversibly inhibited ATP-responses. The results indicated that potentiation and receptor antagonism were dissociable and not a feature common to all known P2 purinoceptor antagonists. 4. In radioligand binding assays, PIT showed a low affinity (pKi < 5) for a range of membrane receptors, including: alpha 1, alpha 2-adrenoceptors, 5-HT1A, 5-HT1B, 5-HT2, 5-HT3, D1, D2, muscarinic, central benzodiazepine, H1, mu-opioid, dihydropyridine and batrachotoxin receptors. PIT showed some affinity (pKi = 5.3) for an adenosine (A1) receptor. 5. In guinea-pig isolated taenia caeci, PIT (12.5-50 microM) irreversibly antagonized relaxations to ATP (3-1000 microM); PIT also directly relaxed the smooth muscle and histamine was used to restore tone. Relaxations to nicotine (10-100 microM), evoked by stimulating intrinsic NANC nerves of taenia caeci preparations in the presence of hyoscine (0.3 microM) and guanethidine (17 microM), were not affected by PIT (50 microM, for 25-60 min). 6. These experiments indicate that PIT causes an irreversible antagonism of ATP receptors but, for recombinant chick P2Y1 purinoceptors, this effect is preceded by potentiation of ATP agonism. The initial potentiation by PIT (and by Coomassie brilliant blue-G) of ATP-responses raises the possibility of designing a new class of modulatory drugs to enhance purinergic transmission at metabotropic purinoceptors.

Full text

PDF
1111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
  2. Barnard E. A., Burnstock G., Webb T. E. G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci. 1994 Mar;15(3):67–70. doi: 10.1016/0165-6147(94)90280-1. [DOI] [PubMed] [Google Scholar]
  3. Boarder M. R., Weisman G. A., Turner J. T., Wilkinson G. F. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci. 1995 Apr;16(4):133–139. doi: 10.1016/s0165-6147(00)89001-x. [DOI] [PubMed] [Google Scholar]
  4. Brown G. B. 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin. J Neurosci. 1986 Jul;6(7):2064–2070. doi: 10.1523/JNEUROSCI.06-07-02064.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnstock G., Campbell G., Satchell D., Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970 Dec;40(4):668–688. doi: 10.1111/j.1476-5381.1970.tb10646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burnstock G., Cusack N. J., Hills J. M., MacKenzie I., Meghji P. Studies on the stereoselectivity of the P2-purinoceptor. Br J Pharmacol. 1983 Aug;79(4):907–913. doi: 10.1111/j.1476-5381.1983.tb10535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Dalziel H. H., Westfall D. P. Receptors for adenine nucleotides and nucleosides: subclassification, distribution, and molecular characterization. Pharmacol Rev. 1994 Dec;46(4):449–466. [PubMed] [Google Scholar]
  10. Dean D. M., Downie J. W. Contribution of adrenergic and "purinergic" neurotransmission to contraction in rabbit detrusor. J Pharmacol Exp Ther. 1978 Nov;207(2):431–445. [PubMed] [Google Scholar]
  11. Erb L., Garrad R., Wang Y., Quinn T., Turner J. T., Weisman G. A. Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem. 1995 Mar 3;270(9):4185–4188. doi: 10.1074/jbc.270.9.4185. [DOI] [PubMed] [Google Scholar]
  12. Filtz T. M., Li Q., Boyer J. L., Nicholas R. A., Harden T. K. Expression of a cloned P2Y purinergic receptor that couples to phospholipase C. Mol Pharmacol. 1994 Jul;46(1):8–14. [PubMed] [Google Scholar]
  13. Foster H. E., Hooper M., Spedding M., Sweetman A. J., Weetman D. F. Anatagonism of the inhibitory effects of adenosine 5'-triphosphate on the isolated taenia of the guinea-pig caecum: structure-activity relationships within a series of isatogen derivatives. Br J Pharmacol. 1978 Jun;63(2):309–314. doi: 10.1111/j.1476-5381.1978.tb09762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibson A., Tucker J. F. The effects of vasoactive intestinal polypeptide and of adenosine 5'-triphosphate on the isolated anococcygeus muscle of the mouse. Br J Pharmacol. 1982 Sep;77(1):97–103. doi: 10.1111/j.1476-5381.1982.tb09274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goll A., Ferry D. R., Glossmann H. Target size analysis of skeletal muscle Ca2+ channels. Positive allosteric heterotropic regulation by d-cis-diltiazem is associated with apparent channel oligomer dissociation. FEBS Lett. 1983 Jun 27;157(1):63–69. doi: 10.1016/0014-5793(83)81117-x. [DOI] [PubMed] [Google Scholar]
  16. Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J Neurochem. 1985 Jun;44(6):1685–1696. doi: 10.1111/j.1471-4159.1985.tb07155.x. [DOI] [PubMed] [Google Scholar]
  17. Hess E. J., Battaglia G., Norman A. B., Iorio L. C., Creese I. Guanine nucleotide regulation of agonist interactions at [3H]SCH23390-labeled D1 dopamine receptors in rat striatum. Eur J Pharmacol. 1986 Feb 11;121(1):31–38. doi: 10.1016/0014-2999(86)90389-4. [DOI] [PubMed] [Google Scholar]
  18. Hill S. J., Young J. M. Histamine H1-receptors in the brain of the guinea-pig and the rat: differences in ligand binding properties and regional distribution. Br J Pharmacol. 1980 Apr;68(4):687–696. doi: 10.1111/j.1476-5381.1980.tb10861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hillaire-Buys D., Chapal J., Petit P., Loubatières-Mariani M. M. Dual regulation of pancreatic vascular tone by P2X and P2Y purinoceptor subtypes. Eur J Pharmacol. 1991 Jul 9;199(3):309–314. doi: 10.1016/0014-2999(91)90494-b. [DOI] [PubMed] [Google Scholar]
  20. Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
  21. Hu P. S., Lindgren E., Jacobson K. A., Fredholm B. B. Interaction of dihydropyridine calcium channel agonists and antagonists with adenosine receptors. Pharmacol Toxicol. 1987 Aug;61(2):121–125. doi: 10.1111/j.1600-0773.1987.tb01788.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kazić T., Milosavljević D. Influence of pyridylisatogen tosylate on contractions produced by ATP and by purinergic stimulation in the terminal ileum of the guinea-pig. J Pharm Pharmacol. 1977 Sep;29(9):542–545. doi: 10.1111/j.2042-7158.1977.tb11392.x. [DOI] [PubMed] [Google Scholar]
  23. Köhler C., Hall H., Ogren S. O., Gawell L. Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem Pharmacol. 1985 Jul 1;34(13):2251–2259. doi: 10.1016/0006-2952(85)90778-6. [DOI] [PubMed] [Google Scholar]
  24. Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
  25. MCEWEN L. M. The effect on the isolated rabbit heart of vagal stimulation and its modification by cocaine, hexamethonium and ouabain. J Physiol. 1956 Mar 28;131(3):678–689. doi: 10.1113/jphysiol.1956.sp005493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moritoki H., Takei M., Kasai T., Matsumura Y., Ishida Y. Possible involvement of prostaglandins in the action of ATP on guinea-pig uterus. J Pharmacol Exp Ther. 1979 Oct;211(1):104–111. [PubMed] [Google Scholar]
  27. Möhler H., Burkard W. P., Keller H. H., Richards J. G., Haefely W. Benzodiazepine antagonist Ro 15-1788: binding characteristics and interaction with drug-induced changes in dopamine turnover and cerebellar cGMP levels. J Neurochem. 1981 Sep;37(3):714–722. doi: 10.1111/j.1471-4159.1982.tb12546.x. [DOI] [PubMed] [Google Scholar]
  28. Nelson D. R., Thomas D. R. [3H]-BRL 43694 (Granisetron), a specific ligand for 5-HT3 binding sites in rat brain cortical membranes. Biochem Pharmacol. 1989 May 15;38(10):1693–1695. doi: 10.1016/0006-2952(89)90319-5. [DOI] [PubMed] [Google Scholar]
  29. Rattan S., Goyal R. K. Evidence against purinergic inhibitory nerves in the vagal pathway to the opossum lower esophageal sphincter. Gastroenterology. 1980 May;78(5 Pt 1):898–904. [PubMed] [Google Scholar]
  30. Renouard A., Widdowson P. S., Millan M. J. Multiple alpha 2 adrenergic receptor subtypes. I. Comparison of [3H]RX821002-labeled rat R alpha-2A adrenergic receptors in cerebral cortex to human H alpha2A adrenergic receptor and other populations of alpha-2 adrenergic subtypes. J Pharmacol Exp Ther. 1994 Sep;270(3):946–957. [PubMed] [Google Scholar]
  31. Rikimaru A., Fukushi Y., Suzuki T. Effects of imidazole and phentolamine on the relaxant responses of guinea-pig taenia coli to transmural stimulation and to adenosine triphosphate. Tohoku J Exp Med. 1971 Oct;105(2):199–200. doi: 10.1620/tjem.105.199. [DOI] [PubMed] [Google Scholar]
  32. Roskoski R., Jr, Guthrie R., Jr, Roskoski L. M., Rossowski W. Degradation of rat brain cholinergic muscarinic receptors in vitro: enhancement by agonists and inhibition by antagonists. J Neurochem. 1985 Oct;45(4):1096–1100. doi: 10.1111/j.1471-4159.1985.tb05528.x. [DOI] [PubMed] [Google Scholar]
  33. Satchell D. G., Lynch A., Bourke P. M., Burnstock G. Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea-pig taenia coli by dipyridamole and hexobendine. Eur J Pharmacol. 1972 Sep;19(3):343–350. doi: 10.1016/0014-2999(72)90100-8. [DOI] [PubMed] [Google Scholar]
  34. Satchell D., Burnstock G., Dann P. Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds. Eur J Pharmacol. 1973 Sep;23(3):264–269. doi: 10.1016/0014-2999(73)90093-9. [DOI] [PubMed] [Google Scholar]
  35. Sharif N. A., Hughes J. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides. 1989 May-Jun;10(3):499–522. doi: 10.1016/0196-9781(89)90135-6. [DOI] [PubMed] [Google Scholar]
  36. Simon J., Webb T. E., King B. F., Burnstock G., Barnard E. A. Characterisation of a recombinant P2Y purinoceptor. Eur J Pharmacol. 1995 Nov 30;291(3):281–289. doi: 10.1016/0922-4106(95)90068-3. [DOI] [PubMed] [Google Scholar]
  37. Small R. C., Spedding M. The effects of 2-2'-pyridylisatogen tosylate on the electrical activity of smooth muscle of the isolated taenia caeci of the guinea-pig [proceedings]. Br J Pharmacol. 1978 Jun;63(2):408P–409P. [PMC free article] [PubMed] [Google Scholar]
  38. Soltoff S. P., McMillian M. K., Talamo B. R. Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1279–1285. doi: 10.1016/0006-291x(89)92741-1. [DOI] [PubMed] [Google Scholar]
  39. Spedding M., Sweetman A. J., Weetman D. F. Antagonism of adenosine 5'-triphosphate-induced relaxation by 2-2'-pyridylisatogen in the taenia of guinea-pig caecum. Br J Pharmacol. 1975 Apr;53(4):575–583. doi: 10.1111/j.1476-5381.1975.tb07397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spedding M., Weetman D. F. Identification of separate receptors for adenosine and adenosine 5'-triphosphate in causing relaxations of the isolated taenia of the guinea-pig caecum. Br J Pharmacol. 1976 Jun;57(2):305–310. doi: 10.1111/j.1476-5381.1976.tb07480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spedding M., Weetman D. F. The mechanism of the relaxant effect of 2-2'-pyridylisatogen on the isolated taenia of the guinea-pig caecum. Br J Pharmacol. 1978 Aug;63(4):659–664. doi: 10.1111/j.1476-5381.1978.tb17279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spedding M., Weetman D. F. The problems associated with the use of 2,2'-pyridylisatogen tosylate in evaluating the allegedly purinergic innervation of peripheral organs. J Pharm Pharmacol. 1978 May;30(5):335–336. doi: 10.1111/j.2042-7158.1978.tb13250.x. [DOI] [PubMed] [Google Scholar]
  43. Su C. Purinergic inhibition of adrenergic transmission in rabbit blood vessels. J Pharmacol Exp Ther. 1978 Feb;204(2):351–361. [PubMed] [Google Scholar]
  44. Tokuyama Y., Hara M., Jones E. M., Fan Z., Bell G. I. Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun. 1995 Jun 6;211(1):211–218. doi: 10.1006/bbrc.1995.1798. [DOI] [PubMed] [Google Scholar]
  45. VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]
  46. Webb T. E., Simon J., Krishek B. J., Bateson A. N., Smart T. G., King B. F., Burnstock G., Barnard E. A. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 1993 Jun 14;324(2):219–225. doi: 10.1016/0014-5793(93)81397-i. [DOI] [PubMed] [Google Scholar]
  47. Ziganshin A. U., Ziganshina L. E., King B. E., Burnstock G. Characteristics of ecto-ATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown. Pflugers Arch. 1995 Jan;429(3):412–418. doi: 10.1007/BF00374157. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES