Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1293–1301. doi: 10.1111/j.1476-5381.1996.tb16728.x

Mechanisms of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: S-16257-2 and S-16260-2.

E Delpón 1, C Valenzuela 1, O Pérez 1, L Franqueza 1, P Gay 1, D J Snyders 1, J Tamargo 1
PMCID: PMC1909796  PMID: 8882628

Abstract

1. The effects of S-16257-2 (S57) and S-16260-2 (R60), the two enantiomers of a new bradycardic agent, were studied on human cloned K+ channels (hKv1.5) stably expressed in a mouse L cell line using the whole-cell configuration of the patch-clamp technique. 2. S57 and R60 did not modify the sigmoidal activation time course of the current but reduced the amplitude and increased the rate of the decay of the current during the application of depolarizing pulses. Both, S57 and R60 produced a concentration-dependent block of hKv1.5 channels with apparent KD values of 29.0 +/- 1.9 microM and 40.9 +/- 4.0 microM, respectively. Thus, S57 was 1.4 fold more potent than R60 in blocking hKv1.5 channels. 3. The blockade produced by S57 and R60 was voltage-dependent and increased steeply between -30 and 0 mV, which corresponded with the voltage range for channel opening. This result indicated that both enantiomers block the hKv1.5 channels, preferentially, when they are in the open state. Between 0 and +60 mV the blockade exhibited a shallow voltage-dependence which was described by an electrical distance of 0.18 +/- 0.002 and 0.19 +/- 0.004 for S57 and R60, respectively. 4. S57 and R60 also increased the rate of decline of the current during the application of depolarizing pulses. The time constant of such decline (tau Block) was faster in the presence of R60 than in the presence of S57 (16.2 +/- 1.5 ms vs. 24.0 +/- 2.6 ms; P < 0.01). The apparent association rate constants (k) were similar for S57 and R60 ((0.52 +/- 0.13) x 10(6) M-1 s-1 and (0.66 +/- 0.13) x 10(6) M-1 s-1, respectively), whereas the dissociation rate constant (l) was faster for R60 than for S57 (25.8 +/- 1.8 s-1 and 13.0 +/- 2.4 s-1, respectively). 5. Both enantiomers slowed the deactivation of the tail currents elicited upon repolarization to -40 mV, thus inducing a 'crossover' phenomenon. These results suggested that drug unbinding is required before hKv1.5 channels can close. 6. It is concluded that R60 and S57 produced a similar time- voltage- and state-dependent block of hKv1.5 channels that can be interpreted as open channel block by the charged form of each enantiomer. The main difference between R60 and S57 were linked to the apparent dissociation rate constants.

Full text

PDF
1293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariëns E. J. Nonchiral, homochiral and composite chiral drugs. Trends Pharmacol Sci. 1993 Feb;14(2):68–75. doi: 10.1016/0165-6147(93)90033-g. [DOI] [PubMed] [Google Scholar]
  2. Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell T. J. Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol. 1983 Sep;80(1):33–40. doi: 10.1111/j.1476-5381.1983.tb11046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K+ current by almokalant in rabbit ventricular myocytes. Circ Res. 1993 Nov;73(5):857–868. doi: 10.1161/01.res.73.5.857. [DOI] [PubMed] [Google Scholar]
  5. Choi K. L., Mossman C., Aubé J., Yellen G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron. 1993 Mar;10(3):533–541. doi: 10.1016/0896-6273(93)90340-w. [DOI] [PubMed] [Google Scholar]
  6. Colatsky T. J., Follmer C. H., Starmer C. F. Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation. 1990 Dec;82(6):2235–2242. doi: 10.1161/01.cir.82.6.2235. [DOI] [PubMed] [Google Scholar]
  7. Courtney K. R. Quantitative structure/activity relations based on use-dependent block and repriming kinetics in myocardium. J Mol Cell Cardiol. 1987 Mar;19(3):319–330. doi: 10.1016/s0022-2828(87)80599-0. [DOI] [PubMed] [Google Scholar]
  8. Delpón E., Valenzuela C., Pérez O., Casis O., Tamargo J. Propafenone preferentially blocks the rapidly activating component of delayed rectifier K+ current in guinea pig ventricular myocytes. Voltage-independent and time-dependent block of the slowly activating component. Circ Res. 1995 Feb;76(2):223–235. doi: 10.1161/01.res.76.2.223. [DOI] [PubMed] [Google Scholar]
  9. Fedida D., Wible B., Wang Z., Fermini B., Faust F., Nattel S., Brown A. M. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res. 1993 Jul;73(1):210–216. doi: 10.1161/01.res.73.1.210. [DOI] [PubMed] [Google Scholar]
  10. Follmer C. H., Cullinan C. A., Colatsky T. J. Differential block of cardiac delayed rectifier current by class Ic antiarrhythmic drugs: evidence for open channel block and unblock. Cardiovasc Res. 1992 Nov;26(11):1121–1130. doi: 10.1093/cvr/26.11.1121. [DOI] [PubMed] [Google Scholar]
  11. Hosoi S., Slayman C. L. Membrane voltage, resistance, and channel switching in isolated mouse fibroblasts (L cells): a patch-electrode analysis. J Physiol. 1985 Oct;367:267–290. doi: 10.1113/jphysiol.1985.sp015824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jeck C. D., Boyden P. A. Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization. Circ Res. 1992 Dec;71(6):1390–1403. doi: 10.1161/01.res.71.6.1390. [DOI] [PubMed] [Google Scholar]
  13. Kobinger W., Lillie C. Cardiovascular characterization of UL-FS 49, 1,3,4,5-tetrahydro-7,8-dimethoxy-3-[3-][2-(3,4-dimethoxyphenyl)ethyl] methylimino]propyl]-2H-3-benzazepin-2-on hydrochloride, a new "specific bradycardic agent". Eur J Pharmacol. 1984 Sep 3;104(1-2):9–18. doi: 10.1016/0014-2999(84)90363-7. [DOI] [PubMed] [Google Scholar]
  14. Kobinger W., Lillie C. Specific bradycardic agents--a novel pharmacological class? Eur Heart J. 1987 Dec;8 (Suppl 50):7–15. doi: 10.1093/eurheartj/8.suppl_l.7. [DOI] [PubMed] [Google Scholar]
  15. Koren G., Liman E. R., Logothetis D. E., Nadal-Ginard B., Hess P. Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells. Neuron. 1990 Jan;4(1):39–51. doi: 10.1016/0896-6273(90)90442-i. [DOI] [PubMed] [Google Scholar]
  16. Mays D. J., Foose J. M., Philipson L. H., Tamkun M. M. Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest. 1995 Jul;96(1):282–292. doi: 10.1172/JCI118032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pérez O., Gay P., Franqueza L., Carrón R., Valenzuela C., Delpón E., Tamargo J. Effects of the two enantiomers, S-16257-2 and S-16260-2, of a new bradycardic agent on guinea-pig isolated cardiac preparations. Br J Pharmacol. 1995 Jul;115(5):787–794. doi: 10.1111/j.1476-5381.1995.tb15002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rampe D., Wible B., Brown A. M., Dage R. C. Effects of terfenadine and its metabolites on a delayed rectifier K+ channel cloned from human heart. Mol Pharmacol. 1993 Dec;44(6):1240–1245. [PubMed] [Google Scholar]
  19. Rampe D., Wible B., Fedida D., Dage R. C., Brown A. M. Verapamil blocks a rapidly activating delayed rectifier K+ channel cloned from human heart. Mol Pharmacol. 1993 Sep;44(3):642–648. [PubMed] [Google Scholar]
  20. Reiffen M., Eberlein W., Müller P., Psiorz M., Noll K., Heider J., Lillie C., Kobinger W., Luger P. Specific bradycardic agents. 1. Chemistry, pharmacology, and structure-activity relationships of substituted benzazepinones, a-new class of compounds exerting antiischemic properties. J Med Chem. 1990 May;33(5):1496–1504. doi: 10.1021/jm00167a033. [DOI] [PubMed] [Google Scholar]
  21. Snyders D. J., Tamkun M. M., Bennett P. B. A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol. 1993 Apr;101(4):513–543. doi: 10.1085/jgp.101.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Snyders D. J., Yeola S. W. Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res. 1995 Sep;77(3):575–583. doi: 10.1161/01.res.77.3.575. [DOI] [PubMed] [Google Scholar]
  23. Tamkun M. M., Knoth K. M., Walbridge J. A., Kroemer H., Roden D. M., Glover D. M. Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J. 1991 Mar 1;5(3):331–337. doi: 10.1096/fasebj.5.3.2001794. [DOI] [PubMed] [Google Scholar]
  24. Thollon C., Cambarrat C., Vian J., Prost J. F., Peglion J. L., Vilaine J. P. Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol. 1994 May;112(1):37–42. doi: 10.1111/j.1476-5381.1994.tb13025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Valenzuela C., Delpón E., Tamkun M. M., Tamargo J., Snyders D. J. Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J. 1995 Aug;69(2):418–427. doi: 10.1016/S0006-3495(95)79914-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  27. Wang Z., Fermini B., Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res. 1993 Dec;73(6):1061–1076. doi: 10.1161/01.res.73.6.1061. [DOI] [PubMed] [Google Scholar]
  28. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang T., Prakash C., Roden D. M., Snyders D. J. Mechanism of block of a human cardiac potassium channel by terfenadine racemate and enantiomers. Br J Pharmacol. 1995 May;115(2):267–274. doi: 10.1111/j.1476-5381.1995.tb15873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yellen G., Jurman M. E., Abramson T., MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 1991 Feb 22;251(4996):939–942. doi: 10.1126/science.2000494. [DOI] [PubMed] [Google Scholar]
  31. Zagotta W. N., Aldrich R. W. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol. 1990 Jan;95(1):29–60. doi: 10.1085/jgp.95.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES