Abstract
1. Injections of N-methyl-D-aspartate (NMDA) and quinolinic acid (Quin), agonists that activate NMDA receptors, into the rat nucleus basalis magnocellularis (nbM) produced a dose-related decrease in cholineacetyltransferase (ChAT) activity in the cerebral cortex and amygdala 7 days after injection. 2. In order to examine the possibility that NMDA and Quin activate different sub-types of NMDA receptors to produce central cholinergic neurotoxicity, the sensitivity of these agonists to the action of three different NMDA receptor antagonists, 2-amino-7-phosphonoheptanoate (AP-7), 7-chlorokynurenate and dizolcipine (MK801) was examined by injecting a fixed dose of NMDA (60 nmol) or Quin (120 nmol) in combination with different doses of the antagonists into the nbM. 3. Both AP-7 (0.6-15 nmol) and 7-chlorokynurenate (3.75-200 nmol), which block the NMDA receptor recognition site and glycine modulatory site respectively, produced a dose-related attenuation of the NMDA or Quin-induced decrease in ChAT activity in both the cortex and amygdala. Both antagonists showed a greater potency against the action of NMDA than against Quin. 4. MK801 (2-200 nmol), an NMDA receptor-linked channel blocker, attenuated the Quin and NMDA response only at a high dose. Unlike AP-7 and 7-chlorokynurenate, MK801 did not exhibit a consistent difference in its potency as an antagonist against NMDA and Quin. 5. The differential antagonist actions of AP-7 or 7-chlorokynurenate against NMDA and Quin-induced cholinergic neurotoxicity suggest that the excitotoxic actions of these two agonists are mediated via distinct NMDA receptor sub-types. The NMDA- and Quin-sensitive receptors appear to differ with respect to properties of the receptor recognition and glycine modulatory sites that are associated with these receptors.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boegman R. J., Cockhill J., Jhamandas K., Beninger R. J. Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala. Neuroscience. 1992 Nov;51(1):129–135. doi: 10.1016/0306-4522(92)90477-j. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
- Dunnett S. B., Whishaw I. Q., Jones G. H., Bunch S. T. Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats. Neuroscience. 1987 Feb;20(2):653–669. doi: 10.1016/0306-4522(87)90117-5. [DOI] [PubMed] [Google Scholar]
- Ffrench-Mullen J. M., Hori N., Carpenter D. O. A comparison of the effects of quinolinate and N-methyl-aspartate on neurons in rat piriform cortex. Neurosci Lett. 1986 Jan 2;63(1):66–70. doi: 10.1016/0304-3940(86)90014-5. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Gill R., Woodruff G. N. Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J Neurosci. 1988 Dec;8(12):4745–4754. doi: 10.1523/JNEUROSCI.08-12-04745.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster A. C., Vezzani A., French E. D., Schwarcz R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett. 1984 Aug 10;48(3):273–278. doi: 10.1016/0304-3940(84)90050-8. [DOI] [PubMed] [Google Scholar]
- Heckers S., Ohtake T., Wiley R. G., Lappi D. A., Geula C., Mesulam M. M. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci. 1994 Mar;14(3 Pt 1):1271–1289. doi: 10.1523/JNEUROSCI.14-03-01271.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Kemp J. A., Foster A. C., Leeson P. D., Priestley T., Tridgett R., Iversen L. L., Woodruff G. N. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6547–6550. doi: 10.1073/pnas.85.17.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler M., Terramani T., Lynch G., Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989 Apr;52(4):1319–1328. doi: 10.1111/j.1471-4159.1989.tb01881.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K., Mishina M. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992 May 7;357(6373):70–74. doi: 10.1038/357070a0. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., Beaton J. A. Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol. 1991 Feb 26;194(1):123–125. doi: 10.1016/0014-2999(91)90134-c. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., Olverman H. J., Nguyen L., Watkins J. C., Cotman C. W. Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9836–9840. doi: 10.1073/pnas.85.24.9836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P. H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992 May 22;256(5060):1217–1221. doi: 10.1126/science.256.5060.1217. [DOI] [PubMed] [Google Scholar]
- Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992 Oct 23;258(5082):597–603. doi: 10.1126/science.1329206. [DOI] [PubMed] [Google Scholar]
- Olney J. W. Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol. 1990;30:47–71. doi: 10.1146/annurev.pa.30.040190.000403. [DOI] [PubMed] [Google Scholar]
- Parent A., Butcher L. L. Organization and morphologies of acetylcholinesterase-containing neurons in the thalamus and hypothalamus of the rat. J Comp Neurol. 1976 Nov 15;170(2):205–225. doi: 10.1002/cne.901700206. [DOI] [PubMed] [Google Scholar]
- Patneau D. K., Mayer M. L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci. 1990 Jul;10(7):2385–2399. doi: 10.1523/JNEUROSCI.10-07-02385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins M. N., Stone T. W. Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharmacol Exp Ther. 1983 Aug;226(2):551–557. [PubMed] [Google Scholar]
- Perkins M. N., Stone T. W. Quinolinic acid: regional variations in neuronal sensitivity. Brain Res. 1983 Jan 17;259(1):172–176. doi: 10.1016/0006-8993(83)91084-3. [DOI] [PubMed] [Google Scholar]
- Rothman S. M., Olney J. W. Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Ann Neurol. 1986 Feb;19(2):105–111. doi: 10.1002/ana.410190202. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Foster A. C., French E. D., Whetsell W. O., Jr, Köhler C. Excitotoxic models for neurodegenerative disorders. Life Sci. 1984 Jul 2;35(1):19–32. doi: 10.1016/0024-3205(84)90148-6. [DOI] [PubMed] [Google Scholar]
- Sekiguchi M., Okamoto K., Sakai Y. Glycine-insensitive NMDA-sensitive receptor expressed in Xenopus oocytes by guinea pig cerebellar mRNA. J Neurosci. 1990 Jul;10(7):2148–2155. doi: 10.1523/JNEUROSCI.10-07-02148.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winn P., Stone T. W., Latimer M., Hastings M. H., Clark A. J. A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-D-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat. Br J Pharmacol. 1991 Apr;102(4):904–908. doi: 10.1111/j.1476-5381.1991.tb12274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Defrawy S. R., Coloma F., Jhamandas K., Boegman R. J., Beninger R. J., Wirsching B. A. Functional and neurochemical cortical cholinergic impairment following neurotoxic lesions of the nucleus basalis magnocellularis in the rat. Neurobiol Aging. 1985 Winter;6(4):325–330. doi: 10.1016/0197-4580(85)90011-9. [DOI] [PubMed] [Google Scholar]
