Abstract
1. Chinese hamster ovary (CHO) cells have been reported to be devoid of 5-HT receptors and have frequently been used as hosts for the expression of cloned 5-HT receptors. Unexpectedly, 5-HT was found to induce profound inhibition of forskolin-stimulated cyclic AMP production in these cells and the aim of this study was to classify the 5-HT receptor involved. 2. In CHO(dhfr-) cells 5-HT was a potent agonist and caused 80-100% inhibition of forskolin stimulated cyclic AMP production. A study using several 5-HT1 receptor agonists revealed the following potencies (p[A50]): RU24969 (9.09 +/- 0.17) > 5-carboxamidotryptamine (8.86 +/- 0.20) > 5-HT (8.07 +/- 0.05) > CP-93,129 (7.74 +/- 0.10) > sumatriptan (5.93 +/- 0.04). All five agonists achieved a similar maximum effect. Irreversible receptor alkylation studies yielded a pKA estimate of 7.04 +/- 0.34 for 5-HT. 3. The 5-HT1A/1B antagonist, (+/-)-cyanopindolol (4-100 nM), caused parallel rightward shifts of the 5-HT concentration-effect curve with no change in asymptote. Schild analysis yielded a pKB estimate of 8.69 +/- 0.09 (Schild slope 1.13 +/- 0.10). (+/-)-Cyanopindolol actually behaved as a partial agonist with an intrinsic activity of 0.2-0.5 and a p[A50] of 8.55. 4. 5-HT (0.01-10 microM) also elicited a concentration-dependent increase in intracellular [Ca2+] in CHO(dhfr-) cells thus demonstrating that dual coupling is not a phenomenon restricted to systems in which there is overexpression of transfected receptors. 5. This agonist and antagonist profile is consistent with the presence of a 5-HT1B receptor. 8-OH-DPAT (1 microM) and renzapride (3 microM) were without effect on forskolin-stimulated cyclic AMP production and ketanserin (0.3 microM) did not antagonize the inhibition produced by 5-HT, thus excluding the involvement of 5-HT1A, 5-HT4, and 5-HT2 receptors. 6. The possibility that expression of a 5-HT1B receptor was associated with the dhfr- mutation was excluded since RU24969, 5-HT and CP-93,129 were also potent agonists in unmutated, CHO-K1 cells: p[A50] 9.03 +/- 0.03, 8.34 +/- 0.05, 7.69 +/- 0.07 respectively, and (+/-)-cyanopindolol (0.1 microM) shifted the 5-HT curve to the right and yielded a pA2 estimate of 8.70 +/- 0.06. 7. Little or no specific binding of [3H]-5-HT (0.1-200 nM) or of the high affinity ligand [125I]-iodocyanopindolol (0.01-3 nM) to CHO(dhfr-) cell membranes could be detected. 5-HT also failed to elicit any increase in the binding of [35S]-GTP gamma S to CHO membranes. 8. In conclusion, cultured CHO cells express 5-HT1B receptors which are negatively coupled to adenylyl cyclase and positively coupled to increases in intracellular calcium. The absence of radioligand binding was unexpected in view of the high potency of 5-HT and the partial agonist activity of the normally 'silent' competitive antagonist, (+/-)-cyanopindolol. This implies very efficient receptor-effector coupling of a low density of 5-HT1B receptors. Clearly, the absence of detectable radioligand binding cannot be assumed to mean the absence of receptors capable of eliciting a significant functional response.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adham N., Ellerbrock B., Hartig P., Weinshank R. L., Branchek T. Receptor reserve masks partial agonist activity of drugs in a cloned rat 5-hydroxytryptamine1B receptor expression system. Mol Pharmacol. 1993 Mar;43(3):427–433. [PubMed] [Google Scholar]
- Adham N., Romanienko P., Hartig P., Weinshank R. L., Branchek T. The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol. 1992 Jan;41(1):1–7. [PubMed] [Google Scholar]
- Berg K. A., Clarke W. P., Sailstad C., Saltzman A., Maayani S. Signal transduction differences between 5-hydroxytryptamine type 2A and type 2C receptor systems. Mol Pharmacol. 1994 Sep;46(3):477–484. [PubMed] [Google Scholar]
- Black J. W., Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983 Dec 22;220(1219):141–162. doi: 10.1098/rspb.1983.0093. [DOI] [PubMed] [Google Scholar]
- Black J. W., Leff P., Shankley N. P. Further analysis of anomalous pKB values for histamine H2-receptor antagonists on the mouse isolated stomach assay. Br J Pharmacol. 1985 Nov;86(3):581–587. doi: 10.1111/j.1476-5381.1985.tb08934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouhelal R., Smounya L., Bockaert J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol. 1988 Jul 7;151(2):189–196. doi: 10.1016/0014-2999(88)90799-6. [DOI] [PubMed] [Google Scholar]
- Cerutis D. R., Hass N. A., Iversen L. J., Bylund D. B. The cloning and expression of an OK cell cDNA encoding a 5-hydroxytryptamine1B receptor. Mol Pharmacol. 1994 Jan;45(1):20–28. [PubMed] [Google Scholar]
- Craig D. A., Martin G. R. 5-HT1B receptors mediate potent contractile responses to 5-HT in rat caudal artery. Br J Pharmacol. 1993 Jul;109(3):609–611. doi: 10.1111/j.1476-5381.1993.tb13615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
- Leff P., Prentice D. J., Giles H., Martin G. R., Wood J. Estimation of agonist affinity and efficacy by direct, operational model-fitting. J Pharmacol Methods. 1990 May;23(3):225–237. doi: 10.1016/0160-5402(90)90066-t. [DOI] [PubMed] [Google Scholar]
- Macor J. E., Burkhart C. A., Heym J. H., Ives J. L., Lebel L. A., Newman M. E., Nielsen J. A., Ryan K., Schulz D. W., Torgersen L. K. 3-(1,2,5,6-Tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one: a potent and selective serotonin (5-HT1B) agonist and rotationally restricted phenolic analogue of 5-methoxy-3-(1,2,5,6-tetrahydropyrid-4-yl)indole. J Med Chem. 1990 Aug;33(8):2087–2093. doi: 10.1021/jm00170a007. [DOI] [PubMed] [Google Scholar]
- Maroteaux L., Saudou F., Amlaiky N., Boschert U., Plassat J. L., Hen R. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3020–3024. doi: 10.1073/pnas.89.7.3020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maura G., Ulivi M., Raiteri M. (-)-Propranolol and (+/-)-cyanopindolol are mixed agonists-antagonists at serotonin autoreceptors in the hippocampus of the rat brain. Neuropharmacology. 1987 Jul;26(7A):713–717. doi: 10.1016/0028-3908(87)90232-2. [DOI] [PubMed] [Google Scholar]
- Murphy T. J., Bylund D. B. Characterization of serotonin-1B receptors negatively coupled to adenylate cyclase in OK cells, a renal epithelial cell line from the opossum. J Pharmacol Exp Ther. 1989 May;249(2):535–543. [PubMed] [Google Scholar]
- Newman-Tancredi A., Wootton R., Strange P. G. High-level stable expression of recombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells. Biochem J. 1992 Aug 1;285(Pt 3):933–938. doi: 10.1042/bj2850933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offord S. J., Ordway G. A., Frazer A. Application of [125I]iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J Pharmacol Exp Ther. 1988 Jan;244(1):144–153. [PubMed] [Google Scholar]
- Raymond J. R. Protein kinase C induces phosphorylation and desensitization of the human 5-HT1A receptor. J Biol Chem. 1991 Aug 5;266(22):14747–14753. [PubMed] [Google Scholar]
- Schoeffter P., Hoyer D. 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):285–292. doi: 10.1007/BF00168512. [DOI] [PubMed] [Google Scholar]
- Sumner M. J., Feniuk W., McCormick J. D., Humphrey P. P. Studies on the mechanism of 5-HT1 receptor-induced smooth muscle contraction in dog saphenous vein. Br J Pharmacol. 1992 Mar;105(3):603–608. doi: 10.1111/j.1476-5381.1992.tb09026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. R., Faruq S. A., Balcarek J. M., Brown A. M. Pharmacological characterisation of [35S]-GTPgammaS binding to Chinese hamster ovary cell membranes stably expressing cloned human 5-HT1D receptor subtypes. J Recept Signal Transduct Res. 1995 Jan-Mar;15(1-4):199–211. doi: 10.3109/10799899509045217. [DOI] [PubMed] [Google Scholar]
- Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Sande J., Allgeier A., Massart C., Czernilofsky A., Vassart G., Dumont J. E., Maenhaut C. The human and dog 5-HT1D receptors can both activate and inhibit adenylate cyclase in transfected cells. Eur J Pharmacol. 1993 Oct 15;247(2):177–184. doi: 10.1016/0922-4106(93)90075-k. [DOI] [PubMed] [Google Scholar]
- Veldman S. A., Bienkowski M. J. Cloning and pharmacological characterization of a novel human 5-hydroxytryptamine1D receptor subtype. Mol Pharmacol. 1992 Sep;42(3):439–444. [PubMed] [Google Scholar]
- Voigt M. M., Laurie D. J., Seeburg P. H., Bach A. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J. 1991 Dec;10(13):4017–4023. doi: 10.1002/j.1460-2075.1991.tb04977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu X., Gilbert S., Birnbaumer M., Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol Pharmacol. 1994 Sep;46(3):460–469. [PubMed] [Google Scholar]