Abstract
1. The effect of clofibrate (CFB), bezafibrate (BFB), and gemfibrozil (GFB) on plasma lipoprotein (VLDL and LDL) concentration, composition and resistance to copper-induced oxidation has been studied in male Sprague-Dawley rats after a 15 day treatment. 2. Plasma triglyceride levels were reduced by CFB (41%) and BFB (39%). This effect was related to a significant reduction (67% for CFB and 56% for BFB) in the amount of circulating VLDL-protein. 3. Plasma total cholesterol was reduced by 28% and 45% in CFB- and BFB-treated animals, respectively, mainly by modification of the cholesteryl ester fraction. In contrast, GFB significantly increased total cholesterol (27%). No modification in the LDL protein or lipid content was introduced by fibrates, although GFB decreased the proportion of LDL-triglycerides, at the expense of an increase in total cholesterol. 4. The fatty acid species carried by VLDL and LDL were affected after fibrate treatment. In general, both particles showed an increase in monounsaturated fatty acids (MUFA) (18:1) and a decrease in polyunsaturated fatty acids (PUFA) species (18:2 n-6, 20:4 n-6, 18:3 n-3, 20:5 n-3). As a consequence, the ratio of PUFA/(SFA+MUFA) for the whole lipoproteins was markedly reduced. 5. The degree of copper-induced VLDL- and LDL-oxidation was assessed by means of the analysis of lysine content, thiobarbituric acid reactive substances (TBARS) production and conjugated dienes formation. Lipoproteins obtained from fibrate-treated rats were more resistant to the oxidative challenge. For each lipoprotein, BFB was the most effective drug, followed by CFB and GFB. 6. The observed antioxidant effect can be ascribed to two independent phenomena produced by fibrates: the reduction of the amount of substrate for the oxidation process due to their hypolipidemic activity, and the alteration in the type of fatty acids transported by the lipoproteins towards an enrichment in species resistant to the oxidation process. 7. As similar lipoprotein fatty acid changes have been reported after fibrate treatment in human subjects, an antioxidant effect of fibrates in human therapy, independent of their well known hypolipidaemic activity, should be expected.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agheli N., Jacotot B. Effect of simvastatin and fenofibrate on the fatty acid composition of hypercholesterolaemic patients. Br J Clin Pharmacol. 1991 Oct;32(4):423–428. doi: 10.1111/j.1365-2125.1991.tb03925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alegret M., Cerqueda E., Ferrando R., Vázquez M., Sánchez R. M., Adzet T., Merlos M., Laguna J. C. Selective modification of rat hepatic microsomal fatty acid chain elongation and desaturation by fibrates: relationship with peroxisome proliferation. Br J Pharmacol. 1995 Apr;114(7):1351–1358. doi: 10.1111/j.1476-5381.1995.tb13355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alegret M., Ferrando R., Vázquez M., Adzet T., Merlos M., Laguna J. C. Relationship between plasma lipids and palmitoyl-CoA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates. Br J Pharmacol. 1994 Jun;112(2):551–556. doi: 10.1111/j.1476-5381.1994.tb13109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aviram M., Dankner G., Cogan U., Hochgraf E., Brook J. G. Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies. Metabolism. 1992 Mar;41(3):229–235. doi: 10.1016/0026-0495(92)90263-a. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berry E. M., Eisenberg S., Haratz D., Friedlander Y., Norman Y., Kaufmann N. A., Stein Y. Effects of diets rich in monounsaturated fatty acids on plasma lipoproteins--the Jerusalem Nutrition Study: high MUFAs vs high PUFAs. Am J Clin Nutr. 1991 Apr;53(4):899–907. doi: 10.1093/ajcn/53.4.899. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67–75. doi: 10.3109/10715768909073429. [DOI] [PubMed] [Google Scholar]
- Glauert H. P., Srinivasan S., Tatum V. L., Chen L. C., Saxon D. M., Lay L. T., Borges T., Baker M., Chen L. H., Robertson L. W. Effects of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cellular antioxidants and lipid peroxidation in rats. Biochem Pharmacol. 1992 Mar 17;43(6):1353–1359. doi: 10.1016/0006-2952(92)90513-i. [DOI] [PubMed] [Google Scholar]
- Hawkins J. M., Jones W. E., Bonner F. W., Gibson G. G. The effect of peroxisome proliferators on microsomal, peroxisomal, and mitochondrial enzyme activities in the liver and kidney. Drug Metab Rev. 1987;18(4):441–515. doi: 10.3109/03602538708994130. [DOI] [PubMed] [Google Scholar]
- Hoffman R., Brook G. J., Aviram M. Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid peroxidation: in vitro and ex vivo studies. Atherosclerosis. 1992 Mar;93(1-2):105–113. doi: 10.1016/0021-9150(92)90204-t. [DOI] [PubMed] [Google Scholar]
- JURAND J., OLIVER M. F. THE EFFECTS OF ETHYL CHLOROPHENOXYISOBUTYRATE ON SERUM CHOLESTERYL, TRIGLYCERIDE AND PHOSPHOLIPID FATTY ACIDS. J Atheroscler Res. 1963 Sep-Dec;3:547–553. doi: 10.1016/s0368-1319(63)80036-8. [DOI] [PubMed] [Google Scholar]
- Kleinveld H. A., Hak-Lemmers H. L., Stalenhoef A. F., Demacker P. N. Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem. 1992 Oct;38(10):2066–2072. [PubMed] [Google Scholar]
- Mao S. J., Yates M. T., Rechtin A. E., Jackson R. L., Van Sickle W. A. Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem. 1991 Jan;34(1):298–302. doi: 10.1021/jm00105a046. [DOI] [PubMed] [Google Scholar]
- Maxwell R. E., Nawrocki J. W., Uhlendorf P. D. Some comparative effects of gemfibrozil, clofibrate, bezafibrate, cholestyramine and compactin on sterol metabolism in rats. Atherosclerosis. 1983 Sep;48(3):195–203. doi: 10.1016/0021-9150(83)90038-2. [DOI] [PubMed] [Google Scholar]
- Scaccini C., Nardini M., D'Aquino M., Gentili V., Di Felice M., Tomassi G. Effect of dietary oils on lipid peroxidation and on antioxidant parameters of rat plasma and lipoprotein fractions. J Lipid Res. 1992 May;33(5):627–633. [PubMed] [Google Scholar]
- Sirtori C. R., Calabresi L., Werba J. P., Franceschini G. Tolerability of fibric acids. Comparative data and biochemical bases. Pharmacol Res. 1992 Oct-Nov;26(3):243–260. doi: 10.1016/1043-6618(92)90212-t. [DOI] [PubMed] [Google Scholar]
- Suckling K. E., Jackson B. Animal models of human lipid metabolism. Prog Lipid Res. 1993;32(1):1–24. doi: 10.1016/0163-7827(93)90002-e. [DOI] [PubMed] [Google Scholar]
- Tavella M., Corder C. N., McConathy W. Effect of gemfibrozil on fatty acids in lipid fractions of plasma from patients with hypertriglyceridemia. J Clin Pharmacol. 1993 Jan;33(1):35–39. doi: 10.1002/j.1552-4604.1993.tb03900.x. [DOI] [PubMed] [Google Scholar]
- Vance J. E. The use of newly synthesized phospholipids for assembly into secreted hepatic lipoproteins. Biochim Biophys Acta. 1989 Nov 6;1006(1):59–69. doi: 10.1016/0005-2760(89)90323-8. [DOI] [PubMed] [Google Scholar]
- Vance J. E., Vance D. E. Lipoprotein assembly and secretion by hepatocytes. Annu Rev Nutr. 1990;10:337–356. doi: 10.1146/annurev.nu.10.070190.002005. [DOI] [PubMed] [Google Scholar]
- Vessby B., Lithell H., Gustafsson I. B., Boberg J. Changes in the fatty acid composition of the plasma lipid esters during lipid-lowering treatment with diet, clofibrate and niceritrol. Reduction of the proportion of linoleate by clofibrate but not by niceritrol. Atherosclerosis. 1980 Jan;35(1):51–65. doi: 10.1016/0021-9150(80)90027-1. [DOI] [PubMed] [Google Scholar]
- Vessby B., Lithell H., Hellsing K., Ostlund-Lindqvist A. M., Gustafsson I. B., Boberg J., Ledermann H. Effects of bezafibrate on the serum lipoprotein lipid and apolipoprotein composition, lipoprotein triglyceride removal capacity and the fatty acid composition of the plasma lipid esters. Atherosclerosis. 1980 Oct;37(2):257–269. doi: 10.1016/0021-9150(80)90011-8. [DOI] [PubMed] [Google Scholar]
- Vázquez M., Alegret M., Adzet T., Merlos M., Laguna J. C. Gemfibrozil modifies acyl composition of liver microsomal phospholipids from guinea-pigs without promoting peroxisomal proliferation. Biochem Pharmacol. 1993 Oct 19;46(8):1515–1518. doi: 10.1016/0006-2952(93)90121-c. [DOI] [PubMed] [Google Scholar]
- Vázquez M., Muñoz S., Alegret M., Adzet T., Merlos M., Laguna J. C. Differential effects of fibrates on the acyl composition of microsomal phospholipids in rats. Br J Pharmacol. 1995 Oct;116(3):2067–2075. doi: 10.1111/j.1476-5381.1995.tb16413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. S., Hartsuck J., McConathy W. J. Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta. 1992 Jan 3;1123(1):1–17. doi: 10.1016/0005-2760(92)90165-r. [DOI] [PubMed] [Google Scholar]
- Weiss P., Bianchine J. R. The effect of clofibrate on vitamin E concentrations in the rat. Atherosclerosis. 1970 Mar-Apr;11(2):203–205. doi: 10.1016/0021-9150(70)90058-4. [DOI] [PubMed] [Google Scholar]