Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(7):1592–1596. doi: 10.1111/j.1476-5381.1996.tb15579.x

Neuroprotective properties of a protein kinase inhibitor against ischaemia-induced neuronal damage in rats and gerbils.

S Satoh 1, I Ikegaki 1, Y Suzuki 1, T Asano 1, M Shibuya 1, H Hidaka 1
PMCID: PMC1909837  PMID: 8842419

Abstract

1. The neuroprotective properties of fasudil (HA1077), a novel protein kinase inhibitor, were evaluated in two animal models of cerebral ischaemia: transient bilateral carotid artery occlusion in Mongolian gerbils and cerebral microembolization in rats. 2. The cytoprotective effect of fasudil on delayed neuronal death in gerbils was compared with the effects of nimodipine, a calcium channel antagonist and ozagrel, a thromboxane A2 synthetase inhibitor. The average of the neuronal cell density in the ischaemic control group was 17.8 +/- 2.1 cells mm-1, whereas fasudil (30 mg kg-1) significantly diminished the loss of CA1 neurones with the average of the neuronal cell density of 101.0 +/- 22.0 cells mm-1; nimodipine (10 mg kg-1) and ozagrel (30 mg kg-1) did not significantly protect against the ischaemia-induced neuronal loss. 3. In the rat model, the effects of fasudil on the histological and neurological consequences of cerebral microembolization produced via the injection of microspheres were examined. Twenty-four hours after the injection of microspheres into the internal carotid artery, all animals in the control group showed typical symptoms of stroke. Neurological function was significantly improved in the fasudil-treated animals. In the controls, the infarcted area in a cortical slice selected to include the hippocampal area was 0.25 +/- 0.01 cm2 (mean +/- s.e.mean) (43.9 +/- 2.4% of cortical section of the half hemisphere); the difference was significant compared to the mean area of 32.7 +/- 2.8 and 21.5 +/- 4.8% observed in rats treated with fasudil (3, 10 mg kg-1), respectively. Fasudil (10 mg kg-1) significantly suppressed the increased water content in ischaemic brain tissues (saline-treated rats, 82.4 +/- 0.2% vs fasudil-treated rats, 81.0 +/- 0.4%). 4. These results suggest that: (i) various protein kinases are involved in the pathogenesis of ischaemic injury; and (ii) the inhibition of protein kinases may be efficacious in preventing neuronal death, thus improving neurological function in the brain damage associated with ischaemic stroke.

Full text

PDF
1592

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alps B. J., Calder C., Hass W. K., Wilson A. D. Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischaemic injury in the hippocampus of the Mongolian gerbil. Br J Pharmacol. 1988 Apr;93(4):877–883. doi: 10.1111/j.1476-5381.1988.tb11475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arai M., Sasaki Y., Nozawa R. Inhibition by the protein kinase inhibitor HA1077 of the activation of NADPH oxidase in human neutrophils. Biochem Pharmacol. 1993 Oct 19;46(8):1487–1490. doi: 10.1016/0006-2952(93)90116-e. [DOI] [PubMed] [Google Scholar]
  3. Asano T., Ikegaki I., Satoh S., Mochizuki D., Hidaka H., Suzuki Y., Shibuya M., Sugita K. Blockade of intracellular actions of calcium may protect against ischaemic damage to the gerbil brain. Br J Pharmacol. 1991 Aug;103(4):1935–1938. doi: 10.1111/j.1476-5381.1991.tb12355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asano T., Ikegaki I., Satoh S., Suzuki Y., Shibuya M., Takayasu M., Hidaka H. Mechanism of action of a novel antivasospasm drug, HA1077. J Pharmacol Exp Ther. 1987 Jun;241(3):1033–1040. [PubMed] [Google Scholar]
  5. Asano T., Suzuki T., Tsuchiya M., Satoh S., Ikegaki I., Shibuya M., Suzuki Y., Hidaka H. Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinase. Br J Pharmacol. 1989 Dec;98(4):1091–1100. doi: 10.1111/j.1476-5381.1989.tb12652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beley A., Edvinsson L., Hardebo J. E. Cerebral microembolization in the rat: changes in blood-brain barrier permeability and cerebral blood flow as related to the degree of ischemia. Acta Neurol Scand. 1981 Aug;64(2):88–100. doi: 10.1111/j.1600-0404.1981.tb04391.x. [DOI] [PubMed] [Google Scholar]
  7. Bralet A. M., Beley A., Beley P., Bralet J. Brain edema and blood-brain barrier permeability following quantitative cerebral microembolism. Stroke. 1979 Jan-Feb;10(1):34–38. doi: 10.1161/01.str.10.1.34. [DOI] [PubMed] [Google Scholar]
  8. Chopp M., Zhang R. L., Chen H., Li Y., Jiang N., Rusche J. R. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994 Apr;25(4):869–876. doi: 10.1161/01.str.25.4.869. [DOI] [PubMed] [Google Scholar]
  9. Germano I. M., Bartkowski H. M., Cassel M. E., Pitts L. H. The therapeutic value of nimodipine in experimental focal cerebral ischemia. Neurological outcome and histopathological findings. J Neurosurg. 1987 Jul;67(1):81–87. doi: 10.3171/jns.1987.67.1.0081. [DOI] [PubMed] [Google Scholar]
  10. Hara H., Onodera H., Yoshidomi M., Matsuda Y., Kogure K. Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat. J Cereb Blood Flow Metab. 1990 Sep;10(5):646–653. doi: 10.1038/jcbfm.1990.117. [DOI] [PubMed] [Google Scholar]
  11. Hiraku S., Taniguchi K., Wakitani K., Omawari N., Kira H., Miyamoto T., Okegawa T., Kawasaki A., Ujiie A. Pharmacological studies on the TXA2 synthetase inhibitor (E)-3-[p-(1H-imidazol-1-ylmethyl)phenyl]-2-propenoic acid (OKY-046). Jpn J Pharmacol. 1986 Jul;41(3):393–401. doi: 10.1254/jjp.41.393. [DOI] [PubMed] [Google Scholar]
  12. Kawamura S., Shirasawa M., Fukasawa H., Yasui N. Attenuated neuropathology by nilvadipine after middle cerebral artery occlusion in rats. Stroke. 1991 Jan;22(1):51–55. doi: 10.1161/01.str.22.1.51. [DOI] [PubMed] [Google Scholar]
  13. Kucharczyk J., Chew W., Derugin N., Moseley M., Rollin C., Berry I., Norman D. Nicardipine reduces ischemic brain injury. Magnetic resonance imaging/spectroscopy study in cats. Stroke. 1989 Feb;20(2):268–274. doi: 10.1161/01.str.20.2.268. [DOI] [PubMed] [Google Scholar]
  14. Maiese K., Wagner J., Boccone L. Nitric oxide: a downstream mediator of calcium toxicity in the ischemic cascade. Neurosci Lett. 1994 Jan 17;166(1):43–47. doi: 10.1016/0304-3940(94)90836-2. [DOI] [PubMed] [Google Scholar]
  15. Meyer F. B., Anderson R. E., Yaksh T. L., Sundt T. M., Jr Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg. 1986 Apr;64(4):617–626. doi: 10.3171/jns.1986.64.4.0617. [DOI] [PubMed] [Google Scholar]
  16. Nadeau S. E., Jordan J. E., Mishra S. K., Haerer A. F. Stroke rates in patients with lacunar and large vessel cerebral infarctions. J Neurol Sci. 1993 Feb;114(2):128–137. doi: 10.1016/0022-510x(93)90287-9. [DOI] [PubMed] [Google Scholar]
  17. Ohtaki M., Tranmer B. Pretreatment of transient focal cerebral ischemia in rats with the calcium antagonist AT877. Stroke. 1994 Jun;25(6):1234–1240. doi: 10.1161/01.str.25.6.1234. [DOI] [PubMed] [Google Scholar]
  18. Sako K., Tsuchiya M., Yonemasu Y., Asano T. HA1077, a novel calcium antagonistic antivasospasm drug, increases both cerebral blood flow and glucose metabolism in conscious rats. Eur J Pharmacol. 1991 Dec 10;209(1-2):39–43. doi: 10.1016/0014-2999(91)90008-e. [DOI] [PubMed] [Google Scholar]
  19. Satoh S., Suzuki Y., Harada T., Ikegaki I., Asano T., Shibuya M., Sugita K., Hidaka H. Possible prophylactic potential of HA1077, a Ca2+ channel antagonist and vasodilator, on chronic cerebral vasospasm. Eur J Pharmacol. 1992 Sep 22;220(2-3):243–248. doi: 10.1016/0014-2999(92)90754-r. [DOI] [PubMed] [Google Scholar]
  20. Satoh S., Suzuki Y., Ikegaki I., Asano T., Shibuya M., Sugita K., Hidaka H. The effects of HA1077 on the cerebral circulation after subarachnoid haemorrhage in dogs. Acta Neurochir (Wien) 1991;110(3-4):185–188. doi: 10.1007/BF01400689. [DOI] [PubMed] [Google Scholar]
  21. Schanne F. A., Kane A. B., Young E. E., Farber J. L. Calcium dependence of toxic cell death: a final common pathway. Science. 1979 Nov 9;206(4419):700–702. doi: 10.1126/science.386513. [DOI] [PubMed] [Google Scholar]
  22. Seto M., Shindo K., Ito K., Sasaki Y. Selective inhibition of myosin phosphorylation and tension of hyperplastic arteries by the kinase inhibitor HA1077. Eur J Pharmacol. 1995 Mar 24;276(1-2):27–33. doi: 10.1016/0014-2999(94)00786-7. [DOI] [PubMed] [Google Scholar]
  23. Shibuya M., Suzuki Y., Sugita K., Saito I., Sasaki T., Takakura K., Nagata I., Kikuchi H., Takemae T., Hidaka H. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg. 1992 Apr;76(4):571–577. doi: 10.3171/jns.1992.76.4.0571. [DOI] [PubMed] [Google Scholar]
  24. Shibuya M., Suzuki Y., Sugita K., Saito I., Sasaki T., Takakura K., Okamoto S., Kikuchi H., Takemae T., Hidaka H. Dose escalation trial of a novel calcium antagonist, AT877, in patients with aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 1990;107(1-2):11–15. doi: 10.1007/BF01402606. [DOI] [PubMed] [Google Scholar]
  25. Siesjö B. K. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab. 1981;1(2):155–185. doi: 10.1038/jcbfm.1981.18. [DOI] [PubMed] [Google Scholar]
  26. Suzuki Y., Shibuya M., Takayasu M., Asano T., Ikegaki I., Satoh S., Saito M., Hidaka H. Protein kinase activity in canine basilar arteries after subarachnoid hemorrhage. Neurosurgery. 1988 Jun;22(6 Pt 1):1028–1031. doi: 10.1227/00006123-198806010-00009. [DOI] [PubMed] [Google Scholar]
  27. Tanaka K., Fukuuchi Y., Gomi S., Takashima S., Mihara B., Shirai T., Nogawa S., Nozaki H., Nagata E. Alteration of second-messenger ligand binding following 2-hr hemispheric ischemia in the gerbil brain. Exp Neurol. 1992 Sep;117(3):254–259. doi: 10.1016/0014-4886(92)90134-c. [DOI] [PubMed] [Google Scholar]
  28. Tsuchiya M., Sako K., Yonemasu Y., Asano T. The effects of HA1077, a novel protein kinase inhibitor, on reductions of cerebral blood flow and glucose metabolism following acute and/or chronic bilateral carotid artery ligation in Wistar rats. Exp Brain Res. 1993;97(2):233–238. doi: 10.1007/BF00228692. [DOI] [PubMed] [Google Scholar]
  29. Yoshida K., Mohsenin V. Inhibition of protein kinase C of human neutrophils by phosphatidylcholines. Life Sci. 1994;54(8):515–524. doi: 10.1016/0024-3205(94)90001-9. [DOI] [PubMed] [Google Scholar]
  30. Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shimazaki H., Ueta N. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg. 1980 Sep;53(3):323–331. doi: 10.3171/jns.1980.53.3.0323. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES