Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8872–8878. doi: 10.1128/jvi.70.12.8872-8878.1996

A hypervariable region in VP1 of chicken infectious anemia virus mediates rate of spread and cell tropism in tissue culture.

R W Renshaw 1, C Soiné 1, T Weinkle 1, P H O'Connell 1, K Ohashi 1, S Watson 1, B Lucio 1, S Harrington 1, K A Schat 1
PMCID: PMC190984  PMID: 8971016

Abstract

Chicken infectious anemia virus (CIAV) is a unique infectious agent with an amino acid composition that has been found to be remarkably conserved even in isolates from different parts of the world. We have characterized field isolates of CIAV which vary significantly in terms of their abilities to replicate in culture, demonstrating a biological difference between isolates. Two sublines of MDCC-MSB1 cells that differ in their abilities to support CIAV were identified. In the MSB1(S) subline the CIA-1 isolate of CIAV was found to be less cytopathogenic than the prototype Cux-1(C) isolate; the MSB1(L) subline, which supports Cux-1(C) replication, was found to be nonpermissive for CIA-1. Alignments of the VP1 sequences of previously examined isolates with those of the field isolates CIA-1 and L-028 and the culture-adapted ConnB isolate revealed a previously unreported hypervariable region spanning amino acid positions 139 to 151. Chimeras of Cux-1(C) and CIA-1 were constructed to examine the potential for this region to affect cytopathogenicity. Transfer of a 316-bp region of Cux-1(C) open reading frame 1 into CIA-1 produced a virus with a cytopathogenic profile typical of Cux-1(C), indicating that one or both of the amino acid differences at positions 139 and 144 affect the rate of replication or the spread of infection. Transfection experiments with additional chimeras indicated that the inability of CIA-1 to replicate in MSB1(L) cells is mediated by a larger region of the genome which contains the hypervariable region in addition to upstream amino acid differences. Analysis of chimeras excluding the entire region of open reading frame 1 suggested the presence of a secondary mediator in the progression of infection in culture that was localized to a region containing a single nucleotide difference which results in amino acid differences in both VP2 (V-153) and the nuclear localization signal of VP3 (C-118). Immunofluorescence assays indicated an increased cytoplasmic distribution of VP3 and a general lack of VP3-associated apoptotic bodies in infections of CIA-1 and chimeras containing V-153 or C-118, as opposed to a primarily nuclear distribution and association with well-formed apoptotic bodies in Cux-1(C)-infected cells.

Full Text

The Full Text of this article is available as a PDF (356.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama Y., Kato S. Two cell lines from lymphomas of Marek's disease. Biken J. 1974 Sep;17(3):105–116. [PubMed] [Google Scholar]
  2. Calnek B. W., Shek W. R., Schat K. A. Spontaneous and induced herpesvirus genome expression in Marek's disease tumor cell lines. Infect Immun. 1981 Nov;34(2):483–491. doi: 10.1128/iai.34.2.483-491.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandratilleke D., O'Connell P., Schat K. A. Characterization of proteins of chicken infectious anemia virus with monoclonal antibodies. Avian Dis. 1991 Oct-Dec;35(4):854–862. [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  5. Claessens J. A., Schrier C. C., Mockett A. P., Jagt E. H., Sondermeijer P. J. Molecular cloning and sequence analysis of the genome of chicken anaemia agent. J Gen Virol. 1991 Aug;72(Pt 8):2003–2006. doi: 10.1099/0022-1317-72-8-2003. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jeurissen S. H., Wagenaar F., Pol J. M., van der Eb A. J., Noteborn M. H. Chicken anemia virus causes apoptosis of thymocytes after in vivo infection and of cell lines after in vitro infection. J Virol. 1992 Dec;66(12):7383–7388. doi: 10.1128/jvi.66.12.7383-7388.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kato A., Fujino M., Nakamura T., Ishihama A., Otaki Y. Gene organization of chicken anemia virus. Virology. 1995 Jun 1;209(2):480–488. doi: 10.1006/viro.1995.1280. [DOI] [PubMed] [Google Scholar]
  9. Koch G., van Roozelaar D. J., Verschueren C. A., van der Eb A. J., Noteborn M. H. Immunogenic and protective properties of chicken anaemia virus proteins expressed by baculovirus. Vaccine. 1995;13(8):763–770. doi: 10.1016/0264-410x(94)00034-k. [DOI] [PubMed] [Google Scholar]
  10. Lucio B., Schat K. A., Shivaprasad H. L. Identification of the chicken anemia agent, reproduction of the disease, and serological survey in the United States. Avian Dis. 1990 Jan-Mar;34(1):146–153. [PubMed] [Google Scholar]
  11. Meehan B. M., Todd D., Creelan J. L., Earle J. A., Hoey E. M., McNulty M. S. Characterization of viral DNAs from cells infected with chicken anaemia agent: sequence analysis of the cloned replicative form and transfection capabilities of cloned genome fragments. Arch Virol. 1992;124(3-4):301–319. doi: 10.1007/BF01309811. [DOI] [PubMed] [Google Scholar]
  12. Noteborn M. H., Todd D., Verschueren C. A., de Gauw H. W., Curran W. L., Veldkamp S., Douglas A. J., McNulty M. S., van der EB A. J., Koch G. A single chicken anemia virus protein induces apoptosis. J Virol. 1994 Jan;68(1):346–351. doi: 10.1128/jvi.68.1.346-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noteborn M. H., de Boer G. F., van Roozelaar D. J., Karreman C., Kranenburg O., Vos J. G., Jeurissen S. H., Hoeben R. C., Zantema A., Koch G. Characterization of cloned chicken anemia virus DNA that contains all elements for the infectious replication cycle. J Virol. 1991 Jun;65(6):3131–3139. doi: 10.1128/jvi.65.6.3131-3139.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pallister J., Fahey K. J., Sheppard M. Cloning and sequencing of the chicken anaemia virus (CAV) ORF-3 gene, and the development of an ELISA for the detection of serum antibody to CAV. Vet Microbiol. 1994 Mar;39(1-2):167–178. doi: 10.1016/0378-1135(94)90097-3. [DOI] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schat K. A., Pratt W. D., Morgan R., Weinstock D., Calnek B. W. Stable transfection of reticuloendotheliosis virus-transformed lymphoblastoid cell lines. Avian Dis. 1992 Apr-Jun;36(2):432–439. [PubMed] [Google Scholar]
  17. Soiné C., Watson S. K., Rybicki E., Lucio B., Nordgren R. M., Parrish C. R., Schat K. A. Determination of the detection limit of the polymerase chain reaction for chicken infectious anemia virus. Avian Dis. 1993 Apr-Jun;37(2):467–476. [PubMed] [Google Scholar]
  18. Todd D., Mawhinney K. A., McNulty M. S. Detection and differentiation of chicken anemia virus isolates by using the polymerase chain reaction. J Clin Microbiol. 1992 Jul;30(7):1661–1666. doi: 10.1128/jcm.30.7.1661-1666.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Todd D., Niagro F. D., Ritchie B. W., Curran W., Allan G. M., Lukert P. D., Latimer K. S., Steffens W. L., 3rd, McNulty M. S. Comparison of three animal viruses with circular single-stranded DNA genomes. Arch Virol. 1991;117(1-2):129–135. doi: 10.1007/BF01310498. [DOI] [PubMed] [Google Scholar]
  20. Yuasa N. Propagation and infectivity titration of the Gifu-1 strain of chicken anemia agent in a cell line (MDCC-MSB1) derived from Marek's disease lymphoma. Natl Inst Anim Health Q (Tokyo) 1983 Spring;23(1):13–20. [PubMed] [Google Scholar]
  21. Zhuang S. M., Shvarts A., van Ormondt H., Jochemsen A. G., van der Eb A. J., Noteborn M. H. Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Cancer Res. 1995 Feb 1;55(3):486–489. [PubMed] [Google Scholar]
  22. von Bülow V., Fuchs B., Vielitz E., Landgraf H. Frühsterblichkeitssyndrom bei Küken nach Doppelinfektion mit dem Virus der Marekschen Krankheit (MDV) und einem Anämie-Erreger (CAA). Zentralbl Veterinarmed B. 1983 Dec;30(10):742–750. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES