Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(7):1862–1868. doi: 10.1111/j.1476-5381.1996.tb15615.x

Differences in hypolipidaemic effects of two statins on Hep G2 cells or human hepatocytes in primary culture.

T Clerc 1, V Sbarra 1, N Domingo 1, J P Rault 1, N Diaconescu 1, V Moutardier 1, N Hasselot 1, H Lafont 1, G Jadot 1, C Laruelle 1, F Chanussot 1
PMCID: PMC1909841  PMID: 8842455

Abstract

1. The objective of this study was to compare in cultured human hepatocytes or Hep G2 cells, changes in the fate of unesterified low density lipoprotein (LDL)-cholesterol induced by crilvastatin, a new cholesterol lowering drug and a reference statin, simvastatin. 2. The experiments were carried out for 20 h, each well contained 4.2 x 10(5)/cm2 Hep G2 cells or 0.5 x 10(5)/Cm2 human hepatocytes, 130 microM ursodeoxycholate, 0.68 microCi or 1.59 microCi unesterified human [14C]-LDL-cholesterol, crilvastatin or simvastatin at 0 or 50 microM (both cell types) or 300 microM (Hep-G2 cells). Incubation with the two drugs resulted in increased amounts of unesterified [14C]-LDL-cholesterol taken by the two cell types, compared to control. 3. Crilvastatin 50 microM led to significantly higher quantities of [14C]-glyco-tauro-conjugated bile salts, compared to simvastatin. Statins reduced the apo B100 level secreted by the two cell types (simvastatin) or human hepatocytes (crilvastatin). Crilvastatin enhanced both the level of apo A1 secreted by the Hep G2 cells and the level of APF, a high density lipoprotein (HDL) and biliary apoprotein. 4. Crilvastatin not only acts by stimulating LDL-cholesterol uptake by hepatocytes, but also by enhancing the catabolism of LDL-cholesterol in bile salts and probably by stimulating HDL and/or bile component secretion. Such a mechanism was not previously described for HMG CoA reductase inhibitors. Our results on APF show that this apoprotein could be considered also as an indicator of changes in bile and/or HDL compartments. 5. The human hepatocyte model appeared to be a suitable and relevant model in the pharmacological-metabolic experiments carried out in this study. It led to more consistent data than those obtained with Hep G2 cells.

Full text

PDF
1862

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amic J., Lairon D., Hauton J. Technique de dosage automatique de l'orthophosphate de grande fiabilité. Clin Chim Acta. 1972 Aug;40(1):107–114. doi: 10.1016/0009-8981(72)90256-2. [DOI] [PubMed] [Google Scholar]
  2. Björkhem I. Effects of mevinolin in rat liver: evidence for a lack of coupling between synthesis of hydroxymethylglutaryl-CoA reductase and cholesterol 7 alpha-hydroxylase activity. Biochim Biophys Acta. 1986 Jun 11;877(1):43–49. doi: 10.1016/0005-2760(86)90116-5. [DOI] [PubMed] [Google Scholar]
  3. Chiu J. H., Hu C. P., Lui W. Y., Lo S. C., Chang C. M. The formation of bile canaliculi in human hepatoma cell lines. Hepatology. 1990 May;11(5):834–842. doi: 10.1002/hep.1840110519. [DOI] [PubMed] [Google Scholar]
  4. Clerc T., Jomier M., Chautan M., Portugal H., Senft M., Pauli A. M., Laruelle C., Morel O., Lafont H., Chanussot F. Mechanisms of action in the liver of crilvastatin, a new hydroxymethylglutaryl-coenzyme A reductase inhibitor. Eur J Pharmacol. 1993 Apr 22;235(1):59–68. doi: 10.1016/0014-2999(93)90820-8. [DOI] [PubMed] [Google Scholar]
  5. Clerc T., Sbarra V., Botta-Fridlund D., Lafont H., Pak-Leung P., Gauthier A., Chanussot F. Bile salt secretion by hepatocytes incubated with bile salts and liposomes or low density lipoproteins. Life Sci. 1995;56(4):277–286. doi: 10.1016/0024-3205(94)00922-8. [DOI] [PubMed] [Google Scholar]
  6. Clerc T., Sbarra V., Diaconescu N., Lafont H., Jadot G., Laruelle C., Chanussot F. Effect of crilvastatin, a new cholesterol lowering agent, on unesterified LDL-cholesterol metabolism into bile salts by rat isolated hepatocytes. Br J Pharmacol. 1995 Feb;114(3):624–631. doi: 10.1111/j.1476-5381.1995.tb17185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dashti N. Synthesis and secretion of nascent lipoprotein particles. Prog Lipid Res. 1991;30(2-3):219–230. doi: 10.1016/0163-7827(91)90018-z. [DOI] [PubMed] [Google Scholar]
  8. Domingo N., Amic J., Hauton J. Dosage automatique des sels biliaries conjugues de la bile par la 3 -hydroxysteroide deshydrogenase. Clin Chim Acta. 1972 Mar;37:399–404. doi: 10.1016/0009-8981(72)90461-5. [DOI] [PubMed] [Google Scholar]
  9. Domingo N., Botta D., Martigne-Cros M., Lechêne de la Porte P., Pak-Leung P., Hauton J., Lafont H. Evidence for the synthesis and secretion of APF--a bile lipid associated protein--by isolated rat hepatocytes. Biochim Biophys Acta. 1990 May 22;1044(2):243–248. doi: 10.1016/0005-2760(90)90309-l. [DOI] [PubMed] [Google Scholar]
  10. Domingo N., Grosclaude J., Bekaert E. D., Mège D., Chapman M. J., Shimizu S., Ayrault-Jarrier M., Ostrow J. D., Lafont H. Epitope mapping of the human biliary amphipathic, anionic polypeptide: similarity with a calcium-binding protein isolated from gallstones and bile, and immunologic cross-reactivity with apolipoprotein A-I. J Lipid Res. 1992 Oct;33(10):1419–1430. [PubMed] [Google Scholar]
  11. Farrants A. K., Nilsson A., Pedersen J. I. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation. J Lipid Res. 1993 Dec;34(12):2041–2050. [PubMed] [Google Scholar]
  12. Galle P. R., Theilmann L., Raedsch R., Otto G., Stiehl A. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology. 1990 Sep;12(3 Pt 1):486–491. doi: 10.1002/hep.1840120307. [DOI] [PubMed] [Google Scholar]
  13. Hahn S. E., Parkes J. G., Goldberg D. M. Apolipoprotein synthesis and secretion in Hep G2 cells: effects of monensin and cycloheximide. Biochem Cell Biol. 1992 Dec;70(12):1339–1346. doi: 10.1139/o92-182. [DOI] [PubMed] [Google Scholar]
  14. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  15. Javitt N. B. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. doi: 10.1096/fasebj.4.2.2153592. [DOI] [PubMed] [Google Scholar]
  16. Javitt N. B., Pfeffer R., Kok E., Burstein S., Cohen B. I., Budai K. Bile acid synthesis in cell culture. J Biol Chem. 1989 Jun 25;264(18):10384–10387. [PubMed] [Google Scholar]
  17. Johnson M. R., Barnes S., Kwakye J. B., Diasio R. B. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver. J Biol Chem. 1991 Jun 5;266(16):10227–10233. [PubMed] [Google Scholar]
  18. Kosykh V. A., Preobrazhensky S. N., Fuki I. V., Zaikina O. E., Tsibulsky V. P., Repin V. S., Smirnov V. N. Cholesterol can stimulate secretion of apolipoprotein B by cultured human hepatocytes. Biochim Biophys Acta. 1985 Oct 2;836(3):385–389. doi: 10.1016/0005-2760(85)90143-2. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Leiss O., von Bergmann K., Gnasso A., Augustin J. Effect of gemfibrozil on biliary lipid metabolism in normolipemic subjects. Metabolism. 1985 Jan;34(1):74–82. doi: 10.1016/0026-0495(85)90064-2. [DOI] [PubMed] [Google Scholar]
  21. Lie R. F., Schmitz J. M., Pierre K. J., Gochman N. Cholesterol oxidase-based determination, by continuous-flow analysis, of total and free cholesterol in serum. Clin Chem. 1976 Oct;22(10):1627–1630. [PubMed] [Google Scholar]
  22. Lindauer M., Beier K., Völkl A., Fahimi H. D. Zonal heterogeneity of peroxisomal enzymes in rat liver: differential induction by three divergent hypolipidemic drugs. Hepatology. 1994 Aug;20(2):475–486. [PubMed] [Google Scholar]
  23. Ma P. T., Gil G., Südhof T. C., Bilheimer D. W., Goldstein J. L., Brown M. S. Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in livers of hamsters and rabbits. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8370–8374. doi: 10.1073/pnas.83.21.8370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martigne M., Melin B., Mahlberg F., Domingo N., Chanussot F., Lafont H., Hauton J. C. Detection and characterization of anionic polypeptide fraction binding sites in rat liver plasma membranes and cultured hepatocytes. Biochim Biophys Acta. 1989 Mar 13;979(3):341–346. doi: 10.1016/0005-2736(89)90254-x. [DOI] [PubMed] [Google Scholar]
  25. Miserez A. R., Rossi F. A., Keller U. Prediction of the therapeutic response to simvastatin by pretreatment lipid concentrations in 2082 subjects. Eur J Clin Pharmacol. 1994;46(2):107–114. doi: 10.1007/BF00199871. [DOI] [PubMed] [Google Scholar]
  26. Morgenstern S., Kessler G., Auerbach J., Flor R. V., Klein B. An automated p-nitrophenylphosphate serum alkaline phosphatase procedure for the AutoAnalyzer. Clin Chem. 1965 Sep;11(9):876–888. [PubMed] [Google Scholar]
  27. Nagata Y., Hidaka Y., Ishida F., Kamei T. Effect of simvastatin (MK-733) on the regulation of cholesterol synthesis in Hep G2 cells. Biochem Pharmacol. 1990 Aug 15;40(4):843–850. doi: 10.1016/0006-2952(90)90325-f. [DOI] [PubMed] [Google Scholar]
  28. Panini S. R., Everson G. T., Spencer T. A. Effects of specific inhibition of sterol biosynthesis on the uptake and utilization of low density lipoprotein cholesterol by HepG2 cells. J Lipid Res. 1991 Oct;32(10):1657–1665. [PubMed] [Google Scholar]
  29. Persijn J. P., van der Slik W. A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem. 1976 Sep;14(9):421–427. doi: 10.1515/cclm.1976.14.1-12.421. [DOI] [PubMed] [Google Scholar]
  30. Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
  31. Sato R., Imanaka T., Takano T. The effect of HMG-CoA reductase inhibitor (CS-514) on the synthesis and secretion of apolipoproteins B and A-1 in the human hepatoblastoma Hep G2. Biochim Biophys Acta. 1990 Jan 16;1042(1):36–41. doi: 10.1016/0005-2760(90)90053-z. [DOI] [PubMed] [Google Scholar]
  32. Sviridov D. D., Safonova I. G., Pavlov M. Y., Kosykh V. A., Podrez E. A., Antonov A. S., Fuki I. V., Repin V. S. Inhibition of cholesterol synthesis by lovastatin tested on six human cell types in vitro. Lipids. 1990 Mar;25(3):177–179. doi: 10.1007/BF02544335. [DOI] [PubMed] [Google Scholar]
  33. Ugele B., Kempen H. J., Kempen J. M., Gebhardt R., Meijer P., Burger H. J., Princen H. M. Heterogeneity of rat liver parenchyma in cholesterol 7 alpha-hydroxylase and bile acid synthesis. Biochem J. 1991 May 15;276(Pt 1):73–77. doi: 10.1042/bj2760073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang S. R., Pessah M., Infante J., Catala D., Salvat C., Infante R. Lipid and lipoprotein metabolism in Hep G2 cells. Biochim Biophys Acta. 1988 Aug 12;961(3):351–363. doi: 10.1016/0005-2760(88)90082-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES