Abstract
1. The cytoskeletal depolymerizing agent, colchicine, prevents the hepatic alpha 1-adrenoceptor-mediated stimulation of respiration, H+ and Ca2+ release to the effluent perfusate, intracellular alkalosis, and glycogenolysis. Unlike the other parameters, colchicine does not perturb the alpha 1-agonist-induced stimulation of gluconeogenesis or phosphorylase 'a' activation, and enhances the increase in portal pressure response. The lack of effect of colchicine on the hepatic alpha 2-adrenoceptor-mediated effects indicates that its actions are alpha 1-specific. 2. Colchicine enhances the acute alpha 1-adrenoceptor-mediated intracellular Ca2+ mobilization and prevents the activation of protein kinase C. This differential effect on the two branches of the alpha 1-adrenoceptor signalling pathway is a distinctive feature of the colchicine action. 3. The lack of effect of colchicine in altering the alpha 1-adrenoceptor ligand binding affinity suggests that it might interact with some receptor-coupled regulatory element(s). 4. The acuteness of the colchicine effect and the ability of its isomer beta-lumicolchicine to prevent all the alpha 1-adrenoceptor-mediated responses but the increase in vascular resistance, indicate that its action cannot be merely ascribed to its effects in depolymerizing tubulin. 5. Colchicine perturbs the hepatic responses to vasoactive peptides. It enhances the vasopressin-induced rise of cytosolic free Ca2+ in isolated hepatocytes and prevents the sustained decrease of Ca2+ in the effluent perfusate. It also inhibits the stimulation of glycogenolysis, without altering the stimulation of gluconeogenesis. 6. It is concluded that there are at least two major alpha 1-adrenoceptor signalling pathways. One is colchicine-sensitive, independent of variations in free cytosolic Ca2+, and protein kinase C-dependent; the other one is colchicine-insensitive, dependent on variations in free cytosolic Ca2+, and protein kinase C-independent.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altin J. G., Bygrave F. L. The Ca2+-mobilizing actions of vasopressin and angiotensin differ from those of the alpha-adrenergic agonist phenylephrine in the perfused rat liver. Biochem J. 1985 Dec 15;232(3):911–917. doi: 10.1042/bj2320911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amir-Zaltsman Y., Ezra E., Scherson T., Zutra A., Littauer U. Z., Salomon Y. ADP-ribosylation of microtubule proteins as catalyzed by cholera toxin. EMBO J. 1982;1(2):181–186. doi: 10.1002/j.1460-2075.1982.tb01144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berven L. A., Hughes B. P., Barritt G. J. A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca2+ inflow in hepatocytes. Biochem J. 1994 Apr 15;299(Pt 2):399–407. doi: 10.1042/bj2990399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
- Butta N., Urcelay E., González-Manchón C., Parrilla R., Ayuso M. S. Pertussis toxin inhibition of alpha 1-adrenergic or vasopressin-induced Ca2+ fluxes in rat liver. Selective inhibition of the alpha 1-adrenergic receptor-coupled metabolic activation. J Biol Chem. 1993 Mar 25;268(9):6081–6089. [PubMed] [Google Scholar]
- Buxton D., Barron L. L., Olson M. S. The effects of alpha-adrenergic agonists on the regulation of the branched chain alpha-ketoacid oxidation in the perfused rat liver. J Biol Chem. 1982 Dec 10;257(23):14318–14323. [PubMed] [Google Scholar]
- Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
- Dasso L. L., Taylor C. W. Different calcium-mobilizing receptors share the same guanine nucleotide-binding protein pool in hepatocytes. Mol Pharmacol. 1992 Sep;42(3):453–457. [PubMed] [Google Scholar]
- Douglas W. W., Sorimachi M. Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Br J Pharmacol. 1972 May;45(1):129–132. [PMC free article] [PubMed] [Google Scholar]
- Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
- García-Sáinz J. A., Hernández-Sotomayor S. M. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6727–6730. doi: 10.1073/pnas.82.20.6727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González-Manchón C., Saz J. M., Ayuso M. S., Parrilla R. Characterization of the alpha-adrenergic stimulation of hepatic respiration. Arch Biochem Biophys. 1988 Sep;265(2):258–266. doi: 10.1016/0003-9861(88)90126-9. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Higashi K., Ishibashi S. Specific binding of tubulin to a guanine nucleotide-binding inhibitory regulatory protein in adenylate cyclase system, Ni. Biochem Biophys Res Commun. 1985 Oct 15;132(1):193–197. doi: 10.1016/0006-291x(85)91006-x. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–560. doi: 10.1146/annurev.pa.30.040190.002535. [DOI] [PubMed] [Google Scholar]
- Im M. J., Graham R. M. A novel guanine nucleotide-binding protein coupled to the alpha 1-adrenergic receptor. I. Identification by photolabeling or membrane and ternary complex preparation. J Biol Chem. 1990 Nov 5;265(31):18944–18951. [PubMed] [Google Scholar]
- Kikkawa U., Nishizuka Y. The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol. 1986;2:149–178. doi: 10.1146/annurev.cb.02.110186.001053. [DOI] [PubMed] [Google Scholar]
- Law D. J., Tidball J. G. Identification of a putative collagen-binding protein from chicken skeletal muscle as glycogen phosphorylase. Biochim Biophys Acta. 1992 Aug 21;1122(3):225–233. doi: 10.1016/0167-4838(92)90397-v. [DOI] [PubMed] [Google Scholar]
- Lim L. K., Sekura R. D., Kaslow H. R. Adenine nucleotides directly stimulate pertussis toxin. J Biol Chem. 1985 Mar 10;260(5):2585–2588. [PubMed] [Google Scholar]
- Mandelkow E. M., Herrmann M., Rühl U. Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J Mol Biol. 1985 Sep 20;185(2):311–327. doi: 10.1016/0022-2836(85)90406-1. [DOI] [PubMed] [Google Scholar]
- Martín-Requero A., Ciprés G., Rodríguez A., Ayuso M. S., Parrilla R. On the mechanism of stimulation of ureagenesis by gluconeogenic substrates: role of pyruvate carboxylase. Am J Physiol. 1992 Sep;263(3 Pt 1):E493–E499. doi: 10.1152/ajpendo.1992.263.3.E493. [DOI] [PubMed] [Google Scholar]
- Menaya J., Parrilla R., Ayuso M. S. Effect of vasopressin on the regulation of protein synthesis initiation in liver cells. Biochem J. 1988 Sep 15;254(3):773–779. doi: 10.1042/bj2540773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
- Nakamura S., Rodbell M. Octyl glucoside extracts GTP-binding regulatory proteins from rat brain "synaptoneurosomes" as large, polydisperse structures devoid of beta gamma complexes and sensitive to disaggregation by guanine nucleotides. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6413–6417. doi: 10.1073/pnas.87.16.6413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
- Piccoletti R., Aletti M. G., Bendinelli P., Arienti D., Bernelli-Zazzera A. Activity and distribution of protein kinase C in liver during the acute-phase response. Biochem Biophys Res Commun. 1990 Feb 28;167(1):345–352. doi: 10.1016/0006-291x(90)91771-j. [DOI] [PubMed] [Google Scholar]
- Ravindra R., Aronstam R. S. Colchicine inhibits acetylcholine receptor stimulation of G protein GTPase activity in rat striatum. Pharmacol Toxicol. 1991 Oct;69(4):259–262. doi: 10.1111/bcpt.1991.69.4.259. [DOI] [PubMed] [Google Scholar]
- Ravindra R., Grosvenor C. E. Involvement of cytoskeleton in polypeptide hormone secretion from the anterior pituitary lobe: a review. Mol Cell Endocrinol. 1990 Jul 9;71(3):165–176. doi: 10.1016/0303-7207(90)90022-z. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saz J. M., Gonzalez-Manchon C., Ayuso M. S., Parrilla R. Role of calcium in the phenylephrine-induced activation of phosphorylase "A" in isolated liver cells. Biochem Biophys Res Commun. 1989 Apr 28;160(2):480–485. doi: 10.1016/0006-291x(89)92458-3. [DOI] [PubMed] [Google Scholar]
- Sternlicht H., Yaffe M. B., Farr G. W. A model of the nucleotide-binding site in tubulin. FEBS Lett. 1987 Apr 20;214(2):226–235. doi: 10.1016/0014-5793(87)80061-3. [DOI] [PubMed] [Google Scholar]
- Tasaka K., Mio M., Izushi K. Role of cytoskeletons on Ca2+ release from the intracellular Ca store of rat peritoneal mast cells. Skin Pharmacol. 1991;4 (Suppl 1):43–55. doi: 10.1159/000210982. [DOI] [PubMed] [Google Scholar]
- Taylor A., Mamelak M., Reaven E., Maffly R. Vasopressin: possible role of microtubules and microfilaments in its action. Science. 1973 Jul 27;181(4097):347–350. doi: 10.1126/science.181.4097.347. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Tohkin M., Yagami T., Katada T., Matsubara T. Possible interaction of alpha 1-adrenergic receptor with pertussis-toxin-sensitive guanine-nucleotide-binding regulatory proteins (G proteins) responsible for phospholipase C activation in rat liver plasma membranes. Eur J Biochem. 1990 Nov 26;194(1):81–87. doi: 10.1111/j.1432-1033.1990.tb19430.x. [DOI] [PubMed] [Google Scholar]
- Tomomura A., Nakamura T., Ichihara A. Role of the cytoskeleton in glycogenolysis stimulated by glucagon in primary cultures of adult rat hepatocytes. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1276–1282. doi: 10.1016/s0006-291x(80)80004-0. [DOI] [PubMed] [Google Scholar]
- Urcelay E., Butta N., Arias-Salgado M. J., Ayuso M. S., Parrilla R. Characterization of the alpha 1-adrenoceptor-mediated responses in perfused rat liver. Biochim Biophys Acta. 1993 Dec 16;1220(1):49–56. doi: 10.1016/0167-4889(93)90096-8. [DOI] [PubMed] [Google Scholar]
- Urcelay E., Butta N., Ciprés G., Martín-Requero A., Ayuso M. S., Parrilla R. Functional coupling of Na+/H+ and Na+/Ca2+ exchangers in the alpha 1-adrenoreceptor-mediated activation of hepatic metabolism. J Biol Chem. 1994 Jan 14;269(2):860–867. [PubMed] [Google Scholar]
- Urcelay E., Butta N., Manchón C. G., Ciprés G., Requero A. M., Ayuso M. S., Parrilla R. Role of protein kinase-C in the alpha 1-adrenoceptor-mediated responses of perfused rat liver. Endocrinology. 1993 Nov;133(5):2105–2115. doi: 10.1210/endo.133.5.8404660. [DOI] [PubMed] [Google Scholar]
- Vaziri C., Downes C. P. Association of a receptor and G-protein-regulated phospholipase C with the cytoskeleton. J Biol Chem. 1992 Nov 15;267(32):22973–22981. [PubMed] [Google Scholar]
- Wang N., Yan K., Rasenick M. M. Tubulin binds specifically to the signal-transducing proteins, Gs alpha and Gi alpha 1. J Biol Chem. 1990 Jan 25;265(3):1239–1242. [PubMed] [Google Scholar]
- Williamson J. R., Cooper R. H., Joseph S. K., Thomas A. P. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Physiol. 1985 Mar;248(3 Pt 1):C203–C216. doi: 10.1152/ajpcell.1985.248.3.C203. [DOI] [PubMed] [Google Scholar]
- Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
- Wilson L., Friedkin M. The biochemical events of mitosis. II. The in vivo and in vitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis. Biochemistry. 1967 Oct;6(10):3126–3135. doi: 10.1021/bi00862a021. [DOI] [PubMed] [Google Scholar]
- Wunderlich F., Müller R., Speth V. Direct evidence for a colchicine-induced impairment in the mobility of membrane components. Science. 1973 Dec 14;182(4117):1136–1138. doi: 10.1126/science.182.4117.1136. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- al-Habori M., Peak M., Agius L. Cytochalasins potently inhibit glycogen synthesis in hepatocyte cultures by an indirect mechanism. Biochem Soc Trans. 1991 Nov;19(4):1125–1127. doi: 10.1042/bst0191125. [DOI] [PubMed] [Google Scholar]
