Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(8):2164–2170. doi: 10.1111/j.1476-5381.1996.tb15658.x

Rapid nitric oxide- and prostaglandin-dependent release of calcitonin gene-related peptide (CGRP) triggered by endotoxin in rat mesenteric arterial bed.

X Wang 1, Z Wu 1, Y Tang 1, R R Fiscus 1, C Han 1
PMCID: PMC1909904  PMID: 8864557

Abstract

1. Our objective was to determine whether endotoxin (ETX) could directly trigger the release of calcitonin gene-related peptide (CGRP) from perivascular sensory nerves in the isolated mesenteric arterial bed (MAB) of the rat and to determine whether nitric oxide (NO) and prostaglandins (PGs) are involved. 2. ETX caused time- and concentration-dependent release of CGRP, and as much as a 17 fold increase in CGRP levels in the perfusate at 10-15 min after the administration of ETX (50 micrograms ml-1). 3. CGRP-like immunoreactivity in the perfusate was shown to co-elute with synthetic rat CGRP by reverse-phase h.p.l.c. 4. Pretreatment of MAB with capsaicin or ruthenium red inhibited ETX-induced CGRP release by 90% and 71%, respectively. ETX-evoked CGRP release was decreased by 84% during Ca2(+)-free perfusion. 5. The release of CGRP evoked by ETX was enhanced by L-arginine by 43% and inhibited by N omega-nitro-L-arginine (L-NOARG) and methylene blue by 37% and 38%, respectively. L-Arginine reversed the effect of L-NOARG. 6. Indomethacin and ibuprofen also inhibited the ETX-induced CGRP release by 34% and 44%, respectively. No additive inhibition could be found when L-NOARG and indomethacin were concomitantly incubated. 7. The data suggest that ETX triggers the release of CGRP from capsaicin-sensitive sensory nerves innervating blood vessels. The ETX-induced CGRP release is dependent on extracellular Ca2+ influx and involves a ruthenium red-sensitive mechanism. Both NO and PGs appear to be involved in the ETX-induced release of CGRP in the rat mesenteric arterial bed.

Full text

PDF
2164

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden W. A., Fiscus R. R., Wang X., Yang L., Maley R., Nielsen M., Lanzo S., Gross D. R. Elevations in circulating calcitonin gene-related peptide correlate with hemodynamic deterioration during endotoxic shock in pigs. Circ Shock. 1994 Mar;42(3):147–153. [PubMed] [Google Scholar]
  2. Ayajiki K., Okamura T., Toda N. Neurogenic relaxations caused by nicotine in isolated cat middle cerebral arteries. J Pharmacol Exp Ther. 1994 Aug;270(2):795–801. [PubMed] [Google Scholar]
  3. Barnes P. J., Belvisi M. G., Rogers D. F. Modulation of neurogenic inflammation: novel approaches to inflammatory disease. Trends Pharmacol Sci. 1990 May;11(5):185–189. doi: 10.1016/0165-6147(90)90112-l. [DOI] [PubMed] [Google Scholar]
  4. Baydoun A. R., Foale R. D., Mann G. E. Bacterial endotoxin rapidly stimulates prolonged endothelium-dependent vasodilatation in the rat isolated perfused heart. Br J Pharmacol. 1993 Aug;109(4):987–991. doi: 10.1111/j.1476-5381.1993.tb13718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brain S. D., Williams T. J., Tippins J. R., Morris H. R., MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985 Jan 3;313(5997):54–56. doi: 10.1038/313054a0. [DOI] [PubMed] [Google Scholar]
  6. Brian J. E., Jr, Heistad D. D., Faraci F. M. Mechanisms of endotoxin-induced dilatation of cerebral arterioles. Am J Physiol. 1995 Sep;269(3 Pt 2):H783–H788. doi: 10.1152/ajpheart.1995.269.3.H783. [DOI] [PubMed] [Google Scholar]
  7. Edvinsson L., Fredholm B. B., Hamel E., Jansen I., Verrecchia C. Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett. 1985 Jul 31;58(2):213–217. doi: 10.1016/0304-3940(85)90166-1. [DOI] [PubMed] [Google Scholar]
  8. Faraci F. M., Breese K. R. Dilatation of cerebral arterioles in response to N-methyl-D-aspartate: role of CGRP and acetylcholine. Brain Res. 1994 Mar 21;640(1-2):93–97. doi: 10.1016/0006-8993(94)91860-0. [DOI] [PubMed] [Google Scholar]
  9. Fiscus R. R. Molecular mechanisms of endothelium-mediated vasodilation. Semin Thromb Hemost. 1988;14 (Suppl):12–22. [PubMed] [Google Scholar]
  10. Fleming I., Dambacher T., Busse R. Endothelium-derived kinins account for the immediate response of endothelial cells to bacterial lipopolysaccharide. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S135–S138. doi: 10.1097/00005344-199204002-00038. [DOI] [PubMed] [Google Scholar]
  11. Franco-Cereceda A., Lundberg J. M. Capsazepine inhibits low pH- and lactic acid-evoked release of calcitonin gene-related peptide from sensory nerves in guinea-pig heart. Eur J Pharmacol. 1992 Oct 6;221(1):183–184. doi: 10.1016/0014-2999(92)90792-3. [DOI] [PubMed] [Google Scholar]
  12. Franco-Cereceda A. Prostaglandins and CGRP release from cardiac sensory nerves. Naunyn Schmiedebergs Arch Pharmacol. 1989 Aug;340(2):180–184. doi: 10.1007/BF00168966. [DOI] [PubMed] [Google Scholar]
  13. Geppetti P., Tramontana M., Patacchini R., Del Bianco E., Santicioli P., Maggi C. A. Neurochemical evidence for the activation of the 'efferent' function of capsaicin-sensitive nerves by lowering of the pH in the guinea-pig urinary bladder. Neurosci Lett. 1990 Jun 22;114(1):101–106. doi: 10.1016/0304-3940(90)90435-c. [DOI] [PubMed] [Google Scholar]
  14. Han S. P., Naes L., Westfall T. C. Calcitonin gene-related peptide is the endogenous mediator of nonadrenergic-noncholinergic vasodilation in rat mesentery. J Pharmacol Exp Ther. 1990 Nov;255(2):423–428. [PubMed] [Google Scholar]
  15. Han S. P., Naes L., Westfall T. C. Inhibition of periarterial nerve stimulation-induced vasodilation of the mesenteric arterial bed by CGRP (8-37) and CGRP receptor desensitization. Biochem Biophys Res Commun. 1990 Apr 30;168(2):786–791. doi: 10.1016/0006-291x(90)92390-l. [DOI] [PubMed] [Google Scholar]
  16. Holzer P., Jocic M. Cutaneous vasodilatation induced by nitric oxide-evoked stimulation of afferent nerves in the rat. Br J Pharmacol. 1994 Aug;112(4):1181–1187. doi: 10.1111/j.1476-5381.1994.tb13208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes S. R., Brain S. D. Nitric oxide-dependent release of vasodilator quantities of calcitonin gene-related peptide from capsaicin-sensitive nerves in rabbit skin. Br J Pharmacol. 1994 Feb;111(2):425–430. doi: 10.1111/j.1476-5381.1994.tb14752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hüttemeier P. C., Ritter E. F., Benveniste H. Calcitonin gene-related peptide mediates hypotension and tachycardia in endotoxic rats. Am J Physiol. 1993 Aug;265(2 Pt 2):H767–H769. doi: 10.1152/ajpheart.1993.265.2.H767. [DOI] [PubMed] [Google Scholar]
  19. Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 1993 Jun;16(6):206–214. doi: 10.1016/0166-2236(93)90156-g. [DOI] [PubMed] [Google Scholar]
  20. Joyce C. D., Fiscus R. R., Wang X., Dries D. J., Morris R. C., Prinz R. A. Calcitonin gene-related peptide levels are elevated in patients with sepsis. Surgery. 1990 Dec;108(6):1097–1101. [PubMed] [Google Scholar]
  21. Kajekar R., Moore P. K., Brain S. D. Essential role for nitric oxide in neurogenic inflammation in rat cutaneous microcirculation. Evidence for an endothelium-independent mechanism. Circ Res. 1995 Mar;76(3):441–447. doi: 10.1161/01.res.76.3.441. [DOI] [PubMed] [Google Scholar]
  22. Kalyanaraman B., Mason R. P., Tainer B., Eling T. E. The free radical formed during the hydroperoxide-mediated deactivation of ram seminal vesicles is hemoprotein-derived. J Biol Chem. 1982 May 10;257(9):4764–4768. [PubMed] [Google Scholar]
  23. Karanth S., Lyson K., McCann S. M. Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3383–3387. doi: 10.1073/pnas.90.8.3383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kawasaki H., Takasaki K., Saito A., Goto K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature. 1988 Sep 8;335(6186):164–167. doi: 10.1038/335164a0. [DOI] [PubMed] [Google Scholar]
  25. Lundberg J. M., Franco-Cereceda A., Lacroix J. S., Pernow J. Release of vasoactive peptides from autonomic and sensory nerves. Blood Vessels. 1991;28(1-3):27–34. doi: 10.1159/000158840. [DOI] [PubMed] [Google Scholar]
  26. Maggi C. A. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol. 1995 Jan;45(1):1–98. doi: 10.1016/0301-0082(94)e0017-b. [DOI] [PubMed] [Google Scholar]
  27. Mulderry P. K., Ghatei M. A., Rodrigo J., Allen J. M., Rosenfeld M. G., Polak J. M., Bloom S. R. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985 Mar;14(3):947–954. doi: 10.1016/0306-4522(85)90156-3. [DOI] [PubMed] [Google Scholar]
  28. Parrillo J. E., Parker M. M., Natanson C., Suffredini A. F., Danner R. L., Cunnion R. E., Ognibene F. P. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 1990 Aug 1;113(3):227–242. doi: 10.7326/0003-4819-113-3-227. [DOI] [PubMed] [Google Scholar]
  29. Ralevic V., Khalil Z., Dusting G. J., Helme R. D. Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature. Br J Pharmacol. 1992 Jul;106(3):650–655. doi: 10.1111/j.1476-5381.1992.tb14390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salvemini D., Korbut R., Anggård E., Vane J. R. Lipopolysaccharide increases release of a nitric oxide-like factor from endothelial cells. Eur J Pharmacol. 1989 Nov 14;171(1):135–136. doi: 10.1016/0014-2999(89)90437-8. [DOI] [PubMed] [Google Scholar]
  31. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simpson P. B., Challiss R. A., Nahorski S. R. Neuronal Ca2+ stores: activation and function. Trends Neurosci. 1995 Jul;18(7):299–306. doi: 10.1016/0166-2236(95)93919-o. [DOI] [PubMed] [Google Scholar]
  33. Smith P. D., Suffredini A. F., Allen J. B., Wahl L. M., Parrillo J. E., Wahl S. M. Endotoxin administration to humans primes alveolar macrophages for increased production of inflammatory mediators. J Clin Immunol. 1994 Mar;14(2):141–148. doi: 10.1007/BF01541347. [DOI] [PubMed] [Google Scholar]
  34. Stadler J., Stefanovic-Racic M., Billiar T. R., Curran R. D., McIntyre L. A., Georgescu H. I., Simmons R. L., Evans C. H. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991 Dec 1;147(11):3915–3920. [PubMed] [Google Scholar]
  35. Swierkosz T. A., Mitchell J. A., Warner T. D., Botting R. M., Vane J. R. Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol. 1995 Apr;114(7):1335–1342. doi: 10.1111/j.1476-5381.1995.tb13353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Szabó C., Mitchell J. A., Thiemermann C., Vane J. R. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993 Mar;108(3):786–792. doi: 10.1111/j.1476-5381.1993.tb12879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Uddman R., Edvinsson L., Ekblad E., Håkanson R., Sundler F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept. 1986 Aug;15(1):1–23. doi: 10.1016/0167-0115(86)90071-6. [DOI] [PubMed] [Google Scholar]
  38. Wang X., Fiscus R. R. Calcitonin gene-related peptide increases cAMP, tension, and rate in rat atria. Am J Physiol. 1989 Feb;256(2 Pt 2):R421–R428. doi: 10.1152/ajpregu.1989.256.2.R421. [DOI] [PubMed] [Google Scholar]
  39. Wang X., Fiscus R. R., Tang Z., Yang L., Wu J., Fan S., Mathews H. L. CGRP in the serum of endotoxin-treated rats suppresses lymphoproliferation. Brain Behav Immun. 1994 Dec;8(4):282–292. doi: 10.1006/brbi.1994.1027. [DOI] [PubMed] [Google Scholar]
  40. Wang X., Fiscus R. R., Yang L., Mathews H. L. Suppression of the functional activity of IL-2-activated lymphocytes by CGRP. Cell Immunol. 1995 Apr 15;162(1):105–113. doi: 10.1006/cimm.1995.1057. [DOI] [PubMed] [Google Scholar]
  41. Wang X., Han C. D., Fiscus R. R., Qi M., Jones S. B. Hypotension- and endotoxin-induced alterations in calcitonin gene-related peptide: modulation by dexamethasone. Circ Shock. 1991 Jun;34(2):217–223. [PubMed] [Google Scholar]
  42. Wang X., Han C., Jones S. B., Yang L., Fiscus R. R. Calcitonin gene-related peptide release in endotoxicosis may be mediated by prostaglandins. Shock. 1995 Jan;3(1):34–39. [PubMed] [Google Scholar]
  43. Wang X., Jones S. B., Zhou Z., Han C., Fiscus R. R. Calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY) levels are elevated in plasma and decreased in vena cava during endotoxin shock in the rat. Circ Shock. 1992 Jan;36(1):21–30. [PubMed] [Google Scholar]
  44. Warren J. B., Coughlan M. L., Williams T. J. Endotoxin-induced vasodilatation in anaesthetized rat skin involves nitric oxide and prostaglandin synthesis. Br J Pharmacol. 1992 Aug;106(4):953–957. doi: 10.1111/j.1476-5381.1992.tb14441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wei E. P., Moskowitz M. A., Boccalini P., Kontos H. A. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res. 1992 Jun;70(6):1313–1319. doi: 10.1161/01.res.70.6.1313. [DOI] [PubMed] [Google Scholar]
  46. Wright C. E., Rees D. D., Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992 Jan;26(1):48–57. doi: 10.1093/cvr/26.1.48. [DOI] [PubMed] [Google Scholar]
  47. de Groot J. J., Veldink G. A., Vliegenthart J. F., Boldingh J., Wever R., van Gelder B. F. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim Biophys Acta. 1975 Jan 23;377(1):71–79. doi: 10.1016/0005-2744(75)90287-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES