Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(8):2171–2177. doi: 10.1111/j.1476-5381.1996.tb15659.x

Influence of superoxide dismutase inhibition on the discrimination between NO and the nitrergic neurotransmitter in the rat gastric fundus.

R A Lefebvre 1
PMCID: PMC1909907  PMID: 8864558

Abstract

1. The influence of diethyldithiocarbamate (DETCA), that irreversibly inhibits Cu/Zn-containing superoxide dismutase, on the inability of 6-anilino-5,8-quinolinedione (LY83583), hypoxanthine/xanthine oxidase, hydroquinone and hydroxocobalamin to reduce electrically-induced NANC relaxations in the rat gastric fundus was investigated. 2. Longitudinal muscle strips of the rat gastric fundus were mounted for auxotonic recording in the presence of atropine and guanethidine and tone was raised by administration of prostaglandin F2 alpha DETCA (3 x 10(-3) M) slightly reduced the short-lasting relaxations induced by 10(-5) M exogenous nitric oxide (NO) and transmural electrical stimulation for 10 s at 4 Hz but this effect was not influenced by 1000 u ml-1 superoxide dismutase (SOD). 3. DETCA (3 x 10(-5) -3 x 10(-3) M) concentration-dependently potentiated the inhibitory effect of LY83583 upon the electrically-induced relaxations, although this was less pronounced than the inhibition of the NO-induced relaxations. The inhibition of the electrically-induced non-adrenergic non-cholinergic (NANC) relaxations was not reversed by SOD while that of the NO-induced relaxations was partially reversed. 4. The inhibitory effect of hypoxanthine/xanthine oxidase, hydroquinone and hydroxocobalamin on the electrically-induced NANC relaxations in the presence of DETCA (3 x 10(-3) M) was not different from the inhibitory effect of DETCA alone. 5. It was concluded that the differentiating effect of LY83583 between exogenous NO and the endogenous nitrergic neurotransmitter is partially related to protection of the endogenous nitrergic neurotransmitter by high levels of intracellular superoxide dismutase. This mechanism does not hold for hydroquinone and hydroxocobalamin, as they still discriminate between exogenous NO and the endogenous nitrergic neurotransmitter in the presence of DETCA. The possibility that the endogenous nitrergic neurotransmitter is not free NO in the rat gastric fundus therefore remains open.

Full text

PDF
2171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H. Non-adrenergic non-cholinergic nervous control of gastrointestinal motility patterns. Arch Int Pharmacodyn Ther. 1986 Apr;280(2 Suppl):50–61. [PubMed] [Google Scholar]
  2. Aimi Y., Kimura H., Kinoshita T., Minami Y., Fujimura M., Vincent S. R. Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience. 1993 Mar;53(2):553–560. doi: 10.1016/0306-4522(93)90220-a. [DOI] [PubMed] [Google Scholar]
  3. Barbier A. J., Lefebvre R. A. Effect of LY 83583 on relaxation induced by non-adrenergic non-cholinergic nerve stimulation and exogenous nitric oxide in the rat gastric fundus. Eur J Pharmacol. 1992 Aug 25;219(2):331–334. doi: 10.1016/0014-2999(92)90315-u. [DOI] [PubMed] [Google Scholar]
  4. Barbier A. J., Lefebvre R. A. Influence of S-nitrosothiols and nitrate tolerance in the rat gastric fundus. Br J Pharmacol. 1994 Apr;111(4):1280–1286. doi: 10.1111/j.1476-5381.1994.tb14884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berman R. S., Martin W. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system. Br J Pharmacol. 1993 Apr;108(4):920–926. doi: 10.1111/j.1476-5381.1993.tb13487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boeckxstaens G. E., De Man J. G., De Winter B. Y., Herman A. G., Pelckmans P. A. Pharmacological similarity between nitric oxide and the nitrergic neurotransmitter in the canine ileocolonic junction. Eur J Pharmacol. 1994 Oct 13;264(1):85–89. doi: 10.1016/0014-2999(94)90640-8. [DOI] [PubMed] [Google Scholar]
  7. Boeckxstaens G. E., Pelckmans P. A., Bogers J. J., Bult H., De Man J. G., Oosterbosch L., Herman A. G., Van Maercke Y. M. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991 Feb;256(2):441–447. [PubMed] [Google Scholar]
  8. Boeckxstaens G. E., Pelckmans P. A., De Man J. G., Bult H., Herman A. G., Van Maercke Y. M. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch Int Pharmacodyn Ther. 1992 Jul-Aug;318:107–115. [PubMed] [Google Scholar]
  9. Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
  10. D'Amato M., Currò D., Montuschi P. Evidence for dual components in the non-adrenergic non-cholinergic relaxation in the rat gastric fundus: role of endogenous nitric oxide and vasoactive intestinal polypeptide. J Auton Nerv Syst. 1992 Mar;37(3):175–186. doi: 10.1016/0165-1838(92)90039-j. [DOI] [PubMed] [Google Scholar]
  11. De Man J. G., Boeckxstaens G. E., De Winter B. Y., Moreels T. G., Misset M. E., Herman A. G., Pelckmans P. A. Comparison of the pharmacological profile of S-nitrosothiols, nitric oxide and the nitrergic neurotransmitter in the canine ileocolonic junction. Br J Pharmacol. 1995 Mar;114(6):1179–1184. doi: 10.1111/j.1476-5381.1995.tb13331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ekblad E., Mulder H., Uddman R., Sundler F. NOS-containing neurons in the rat gut and coeliac ganglia. Neuropharmacology. 1994 Nov;33(11):1323–1331. doi: 10.1016/0028-3908(94)90032-9. [DOI] [PubMed] [Google Scholar]
  13. Forster E. R., Southam E. The intrinsic and vagal extrinsic innervation of the rat stomach contains nitric oxide synthase. Neuroreport. 1993 Mar;4(3):275–278. doi: 10.1097/00001756-199303000-00012. [DOI] [PubMed] [Google Scholar]
  14. Furchgott R. F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1-3):52–61. doi: 10.1159/000158843. [DOI] [PubMed] [Google Scholar]
  15. Gibson A., Babbedge R., Brave S. R., Hart S. L., Hobbs A. J., Tucker J. F., Wallace P., Moore P. K. An investigation of some S-nitrosothiols, and of hydroxy-arginine, on the mouse anococcygeus. Br J Pharmacol. 1992 Nov;107(3):715–721. doi: 10.1111/j.1476-5381.1992.tb14512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gillespie J. S., Sheng H. The effects of pyrogallol and hydroquinone on the response to NANC nerve stimulation in the rat anococcygeus and the bovine retractor penis muscles. Br J Pharmacol. 1990 Jan;99(1):194–196. doi: 10.1111/j.1476-5381.1990.tb14677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hobbs A. J., Tucker J. F., Gibson A. Differentiation by hydroquinone of relaxations induced by exogenous and endogenous nitrates in non-vascular smooth muscle: role of superoxide anions. Br J Pharmacol. 1991 Nov;104(3):645–650. doi: 10.1111/j.1476-5381.1991.tb12483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jenkinson K. M., Reid J. J., Rand M. J. Hydroxocobalamin and haemoglobin differentiate between exogenous and neuronal nitric oxide in the rat gastric fundus. Eur J Pharmacol. 1995 Mar 6;275(2):145–152. doi: 10.1016/0014-2999(94)00762-v. [DOI] [PubMed] [Google Scholar]
  19. Kawada T., Ishibashi T., Sasage H., Kato K., Imai S. Modification by LY 83583 and methylene blue of relaxation induced by nitric oxide, glyceryl trinitrate, sodium nitroprusside and atriopeptin in aortae of the rat, guinea-pig and rabbit. Gen Pharmacol. 1994 Nov;25(7):1361–1371. doi: 10.1016/0306-3623(94)90160-0. [DOI] [PubMed] [Google Scholar]
  20. Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990 Jun;66(6):1561–1575. doi: 10.1161/01.res.66.6.1561. [DOI] [PubMed] [Google Scholar]
  21. Kelner M. J., Bagnell R., Hale B., Alexander N. M. Inactivation of intracellular copper-zinc superoxide dismutase by copper chelating agents without glutathione depletion and methemoglobin formation. Free Radic Biol Med. 1989;6(4):355–360. doi: 10.1016/0891-5849(89)90079-8. [DOI] [PubMed] [Google Scholar]
  22. Lefebvre R. A., Hasrat J., Gobert A. Influence of NG-nitro-L-arginine methyl ester on vagally induced gastric relaxation in the anaesthetized rat. Br J Pharmacol. 1992 Feb;105(2):315–320. doi: 10.1111/j.1476-5381.1992.tb14252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lefebvre R. A. Nitric oxide in the peripheral nervous system. Ann Med. 1995 Jun;27(3):379–388. doi: 10.3109/07853899509002591. [DOI] [PubMed] [Google Scholar]
  24. Lefebvre R. A. Non-adrenergic non-cholinergic neurotransmission in the proximal stomach. Gen Pharmacol. 1993 Mar;24(2):257–266. doi: 10.1016/0306-3623(93)90301-d. [DOI] [PubMed] [Google Scholar]
  25. Lefebvre R. A., Verplanken P. A., Bogaert M. G. Pharmacological characterization of the postjunctional beta-adrenoceptors in the rat gastric fundus. Eur J Pharmacol. 1984 Oct 30;106(1):1–9. doi: 10.1016/0014-2999(84)90671-x. [DOI] [PubMed] [Google Scholar]
  26. Li C. G., Rand M. J. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990 Dec 4;191(3):303–309. doi: 10.1016/0014-2999(90)94162-q. [DOI] [PubMed] [Google Scholar]
  27. Lilley E., Gibson A. Inhibition of relaxations to nitrergic stimulation of the mouse anococcygeus by duroquinone. Br J Pharmacol. 1995 Dec;116(8):3231–3236. doi: 10.1111/j.1476-5381.1995.tb15129.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liu X., Gillespie J. S., Martin W. Non-adrenergic, non-cholinergic relaxation of the bovine retractor penis muscle: role of S-nitrosothiols. Br J Pharmacol. 1994 Apr;111(4):1287–1295. doi: 10.1111/j.1476-5381.1994.tb14885.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ludbrook J. On making multiple comparisons in clinical and experimental pharmacology and physiology. Clin Exp Pharmacol Physiol. 1991 Jun;18(6):379–392. doi: 10.1111/j.1440-1681.1991.tb01468.x. [DOI] [PubMed] [Google Scholar]
  30. Martin W., McAllister K. H., Paisley K. NANC neurotransmission in the bovine retractor penis muscle is blocked by superoxide anion following inhibition of superoxide dismutase with diethyldithiocarbamate. Neuropharmacology. 1994 Nov;33(11):1293–1301. doi: 10.1016/0028-3908(94)90029-9. [DOI] [PubMed] [Google Scholar]
  31. Moncada S., Palmer R. M., Gryglewski R. J. Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9164–9168. doi: 10.1073/pnas.83.23.9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mülsch A., Busse R., Liebau S., Förstermann U. LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther. 1988 Oct;247(1):283–288. [PubMed] [Google Scholar]
  33. Rajanayagam M. A., Li C. G., Rand M. J. Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol. 1993 Jan;108(1):3–5. doi: 10.1111/j.1476-5381.1993.tb13429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rand M. J., Li C. G. Differential effects of hydroxocobalamin on relaxations induced by nitrosothiols in rat aorta and anococcygeus muscle. Eur J Pharmacol. 1993 Sep 14;241(2-3):249–254. doi: 10.1016/0014-2999(93)90210-9. [DOI] [PubMed] [Google Scholar]
  35. Rand M. J., Li C. G. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol. 1995;57:659–682. doi: 10.1146/annurev.ph.57.030195.003303. [DOI] [PubMed] [Google Scholar]
  36. Takahashi T., Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol. 1995 Apr 15;484(Pt 2):481–492. doi: 10.1113/jphysiol.1995.sp020680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wood J., Garthwaite J. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology. 1994 Nov;33(11):1235–1244. doi: 10.1016/0028-3908(94)90022-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES