Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Dec;70(12):8961–8971. doi: 10.1128/jvi.70.12.8961-8971.1996

Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH.

K M Duus 1, C Grose 1
PMCID: PMC190993  PMID: 8971025

Abstract

Varicella-zoster virus (VZV) is an extremely cell-associated alphaherpesvirus; VZV infection is spread almost exclusively via cell membrane fusion. The envelope glycoprotein H (gH) is highly conserved among the herpesviruses. A virus-encoded chaperone, glycoprotein L (gL), associates with gH, and the gH:gL complex is required for gH maturation and membrane expression. We recently demonstrated that in the VZV system, the gH:gL complex facilitated cell membrane fusion and extensive polykaryon formation in transfected cells (K. M. Duus, C. Hatfield, and C. Grose, Virology 210:429-440, 1995). To further define the functions of the unusual VZV gL chaperone protein, we have performed a series of mutagenesis experiments with both gH and gL and analyzed the mutants by laser scanning confocal microscopy in a transfection-based fusion assay. We established the fact that immature gH exited the endoplasmic reticulum (ER) when coexpressed with either gE or gI and appeared on the cell surface in a patch pattern. A similar effect was observed on the cell surface with gH with a cytoplasmic tail mutagenized to closely resemble the vaccinia virus hemagglutinin cytoplasmic tail. Site-directed mutagenesis of the five gL cysteine residues demonstrated that four of five cysteines participated in the gL chaperone function required for proper maturation of gH. On the other hand, the same gL mutants facilitated transport of immature gH to the cell surface, where patching occurred. Studies of gL processing demonstrated that maturation did not require transport beyond the medial-Golgi; furthermore, gL was not detected in the outer cell membrane, nor was it secreted into the medium. Colocalization studies with 3,3'-dihexyloxa-cabocyanine iodide and N-(e-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-erythro-sphingosine confirmed that gL was found primarily in the ER and cis/medial-Golgi when expressed alone. When all of these data were considered, they suggested a posttranslational gH:gL regulation model whereby the gL chaperone modulated gH expression via retrograde flow from the Golgi to the ER. In this schema, mature gL returns to the ER, where it escorts immature gH from the ER to the Golgi; thereafter, mature gH is transported from the trans-Golgi to the outer cell membrane, where it acts as a major fusogen.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baranowski E., Dubuisson J., van Drunen Little-van den Hurk S., Babiuk A. L., Michel A., Pastoret P. P., Thiry E. Synthesis and processing of bovine herpesvirus-1 glycoprotein H. Virology. 1995 Jan 10;206(1):651–654. doi: 10.1016/s0042-6822(95)80083-2. [DOI] [PubMed] [Google Scholar]
  2. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson T. C. Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J Virol. 1988 Apr;62(4):1416–1422. doi: 10.1128/jvi.62.4.1416-1422.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  4. De Brabander M. J., Van de Veire R. M., Aerts F. E., Borgers M., Janssen P. A. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 1976 Mar;36(3):905–916. [PubMed] [Google Scholar]
  5. Dubin G., Jiang H. Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. J Virol. 1995 Jul;69(7):4564–4568. doi: 10.1128/jvi.69.7.4564-4568.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duus K. M., Hatfield C., Grose C. Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology. 1995 Jul 10;210(2):429–440. doi: 10.1006/viro.1995.1359. [DOI] [PubMed] [Google Scholar]
  7. Forghani B., Ni L., Grose C. Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex. Virology. 1994 Mar;199(2):458–462. doi: 10.1006/viro.1994.1145. [DOI] [PubMed] [Google Scholar]
  8. Fra A., Sitia R. The endoplasmic reticulum as a site of protein degradation. Subcell Biochem. 1993;21:143–168. doi: 10.1007/978-1-4615-2912-5_7. [DOI] [PubMed] [Google Scholar]
  9. Fuller A. O., Lee W. C. Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. J Virol. 1992 Aug;66(8):5002–5012. doi: 10.1128/jvi.66.8.5002-5012.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaudin Y., Tuffereau C., Durrer P., Flamand A., Ruigrok R. W. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation. J Virol. 1995 Sep;69(9):5528–5534. doi: 10.1128/jvi.69.9.5528-5534.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gershon A., Cosio L., Brunell P. A. Observations on the growth of varicella-zoster virus in human diploid cells. J Gen Virol. 1973 Jan;18(1):21–31. doi: 10.1099/0022-1317-18-1-21. [DOI] [PubMed] [Google Scholar]
  12. Grose C. Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Annu Rev Microbiol. 1990;44:59–80. doi: 10.1146/annurev.mi.44.100190.000423. [DOI] [PubMed] [Google Scholar]
  13. Harson R., Grose C. Egress of varicella-zoster virus from the melanoma cell: a tropism for the melanocyte. J Virol. 1995 Aug;69(8):4994–5010. doi: 10.1128/jvi.69.8.4994-5010.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heineman T., Gong M., Sample J., Kieff E. Identification of the Epstein-Barr virus gp85 gene. J Virol. 1988 Apr;62(4):1101–1107. doi: 10.1128/jvi.62.4.1101-1107.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henley D. C., Weir J. P. The relative stability of selected herpes simplex virus type 1 mRNAs. Virus Res. 1991 Jul;20(2):121–132. doi: 10.1016/0168-1702(91)90104-4. [DOI] [PubMed] [Google Scholar]
  16. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol. 1992 Apr;66(4):2240–2250. doi: 10.1128/jvi.66.4.2240-2250.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones D. H. PCR mutagenesis and recombination in vivo. PCR Methods Appl. 1994 Jun;3(6):S141–S148. doi: 10.1101/gr.3.6.s141. [DOI] [PubMed] [Google Scholar]
  18. Jones F., Grose C. Role of cytoplasmic vacuoles in varicella-zoster virus glycoprotein trafficking and virion envelopment. J Virol. 1988 Aug;62(8):2701–2711. doi: 10.1128/jvi.62.8.2701-2711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaye J. F., Gompels U. A., Minson A. C. Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. J Gen Virol. 1992 Oct;73(Pt 10):2693–2698. doi: 10.1099/0022-1317-73-10-2693. [DOI] [PubMed] [Google Scholar]
  20. Klupp B. G., Mettenleiter T. C. Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology. 1991 Jun;182(2):732–741. doi: 10.1016/0042-6822(91)90614-h. [DOI] [PubMed] [Google Scholar]
  21. Letourneur F., Gaynor E. C., Hennecke S., Démollière C., Duden R., Emr S. D., Riezman H., Cosson P. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell. 1994 Dec 30;79(7):1199–1207. doi: 10.1016/0092-8674(94)90011-6. [DOI] [PubMed] [Google Scholar]
  22. Li L., Coelingh K. L., Britt W. J. Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein H. J Virol. 1995 Oct;69(10):6047–6053. doi: 10.1128/jvi.69.10.6047-6053.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li Y., Drone C., Sat E., Ghosh H. P. Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J Virol. 1993 Jul;67(7):4070–4077. doi: 10.1128/jvi.67.7.4070-4077.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lippincott-Schwartz J., Donaldson J. G., Schweizer A., Berger E. G., Hauri H. P., Yuan L. C., Klausner R. D. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell. 1990 Mar 9;60(5):821–836. doi: 10.1016/0092-8674(90)90096-w. [DOI] [PubMed] [Google Scholar]
  25. Lippincott-Schwartz J. Membrane cycling between the ER and Golgi apparatus and its role in biosynthetic transport. Subcell Biochem. 1993;21:95–119. doi: 10.1007/978-1-4615-2912-5_5. [DOI] [PubMed] [Google Scholar]
  26. Liu D. X., Gompels U. A., Nicholas J., Lelliott C. Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein. J Gen Virol. 1993 Sep;74(Pt 9):1847–1857. doi: 10.1099/0022-1317-74-9-1847. [DOI] [PubMed] [Google Scholar]
  27. Maass D. R., Atkinson P. H. Retention by the endoplasmic reticulum of rotavirus VP7 is controlled by three adjacent amino-terminal residues. J Virol. 1994 Jan;68(1):366–378. doi: 10.1128/jvi.68.1.366-378.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miesenböck G., Rothman J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J Cell Biol. 1995 Apr;129(2):309–319. doi: 10.1083/jcb.129.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller N., Hutt-Fletcher L. M. A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol. 1988 Jul;62(7):2366–2372. doi: 10.1128/jvi.62.7.2366-2372.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Montalvo E. A., Grose C. Neutralization epitope of varicella zoster virus on native viral glycoprotein gp118 (VZV glycoprotein gpIII). Virology. 1986 Mar;149(2):230–241. doi: 10.1016/0042-6822(86)90124-8. [DOI] [PubMed] [Google Scholar]
  31. Montalvo E. A., Parmley R. T., Grose C. Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J Virol. 1985 Mar;53(3):761–770. doi: 10.1128/jvi.53.3.761-770.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moore P. S., Gao S. J., Dominguez G., Cesarman E., Lungu O., Knowles D. M., Garber R., Pellett P. E., McGeoch D. J., Chang Y. Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol. 1996 Jan;70(1):549–558. doi: 10.1128/jvi.70.1.549-558.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  34. Nemecková S., Ludvíková V., Maresová L., Krystofová J., Hainz P., Kutinová L. Induction of varicella-zoster virus-neutralizing antibodies in mice by co-infection with recombinant vaccinia viruses expressing the gH or gL gene. J Gen Virol. 1996 Feb;77(Pt 2):211–215. doi: 10.1099/0022-1317-77-2-211. [DOI] [PubMed] [Google Scholar]
  35. Nussbaum O., Broder C. C., Berger E. A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol. 1994 Sep;68(9):5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pagano R. E., Sepanski M. A., Martin O. C. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol. 1989 Nov;109(5):2067–2079. doi: 10.1083/jcb.109.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peeters B., de Wind N., Broer R., Gielkens A., Moormann R. Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J Virol. 1992 Jun;66(6):3888–3892. doi: 10.1128/jvi.66.6.3888-3892.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pelham H. R. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 1988 Apr;7(4):913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pumphrey C. Y., Gray W. L. DNA sequence of the simian varicella virus (SVV) gH gene and analysis of the SVV and varicella zoster virus gH transcripts. Virus Res. 1995 Sep;38(1):55–70. doi: 10.1016/0168-1702(95)00049-v. [DOI] [PubMed] [Google Scholar]
  40. Rodriguez J. E., Moninger T., Grose C. Entry and egress of varicella virus blocked by same anti-gH monoclonal antibody. Virology. 1993 Oct;196(2):840–844. doi: 10.1006/viro.1993.1543. [DOI] [PubMed] [Google Scholar]
  41. Roop C., Hutchinson L., Johnson D. C. A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol. 1993 Apr;67(4):2285–2297. doi: 10.1128/jvi.67.4.2285-2297.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  43. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984 Sep;38(2):535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  44. Shida H. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology. 1986 Apr 30;150(2):451–462. doi: 10.1016/0042-6822(86)90309-0. [DOI] [PubMed] [Google Scholar]
  45. Shida H. Variants of vaccinia virus hemagglutinin altered in intracellular transport. Mol Cell Biol. 1986 Nov;6(11):3734–3745. doi: 10.1128/mcb.6.11.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Skoff A. M., Holland T. C. The effect of cytoplasmic domain mutations on membrane anchoring and glycoprotein processing of herpes simplex virus type 1 glycoprotein C. Virology. 1993 Oct;196(2):804–816. doi: 10.1006/viro.1993.1538. [DOI] [PubMed] [Google Scholar]
  47. Spaete R. R., Perot K., Scott P. I., Nelson J. A., Stinski M. F., Pachl C. Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology. 1993 Apr;193(2):853–861. doi: 10.1006/viro.1993.1194. [DOI] [PubMed] [Google Scholar]
  48. Steffy K. R., Weir J. P. Mutational analysis of two herpes simplex virus type 1 late promoters. J Virol. 1991 Dec;65(12):6454–6460. doi: 10.1128/jvi.65.12.6454-6460.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Steffy K. R., Weir J. P. Upstream promoter elements of the herpes simplex virus type 1 glycoprotein H gene. J Virol. 1991 Feb;65(2):972–975. doi: 10.1128/jvi.65.2.972-975.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Terasaki M., Reese T. S. Characterization of endoplasmic reticulum by co-localization of BiP and dicarbocyanine dyes. J Cell Sci. 1992 Feb;101(Pt 2):315–322. doi: 10.1242/jcs.101.2.315. [DOI] [PubMed] [Google Scholar]
  51. WELLER T. H. Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes zoster. Proc Soc Exp Biol Med. 1953 Jun;83(2):340–346. doi: 10.3181/00379727-83-20354. [DOI] [PubMed] [Google Scholar]
  52. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  53. Wilson D. W., Davis-Poynter N., Minson A. C. Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. J Virol. 1994 Nov;68(11):6985–6993. doi: 10.1128/jvi.68.11.6985-6993.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yao Z., Jackson W., Forghani B., Grose C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol. 1993 Jan;67(1):305–314. doi: 10.1128/jvi.67.1.305-314.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yao Z., Jones D. H., Grose C. Site-directed mutagenesis of herpesvirus glycoprotein phosphorylation sites by recombination polymerase chain reaction. PCR Methods Appl. 1992 Feb;1(3):205–207. doi: 10.1101/gr.1.3.205. [DOI] [PubMed] [Google Scholar]
  56. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology. 1993 Aug;195(2):387–396. doi: 10.1006/viro.1993.1388. [DOI] [PubMed] [Google Scholar]
  57. Yoshida S., Lee L. F., Yanagida N., Nazerian K. Identification and characterization of a Marek's disease virus gene homologous to glycoprotein L of herpes simplex virus. Virology. 1994 Oct;204(1):414–419. doi: 10.1006/viro.1994.1546. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES