Abstract
1. Central nicotinic receptor function examined in vitro, by measuring nicotine-induced [3H]-dopamine release from rat striatal synaptosomes. 2. The agonists (-)-nicotine, acetylcholine, 1,1-dimethyl-4-phenylpiperazinium (DMPP) and cytisine (10(-7)-10(-4) M) all increased [3H]-dopamine release in a concentration-dependent manner. Cytisine did not produce a full agonist response, compared to the other agonists. 3. The actions of nicotine, acetylcholine and cytisine were largely dependent on external Ca2+. In contrast, DMPP (10(-5) and 10(-4) M) evoked a marked release of [3H]-dopamine even in the absence of Ca2+. Nevertheless, in the presence of external Ca2+, responses to DMPP were completely blocked by the nicotinic antagonists chlorisondamine and mecamylamine (5 x 10(-5) M); in the absence of external Ca2+, blockade was only partial. 4. Chlorisondamine, mecamylamine and dihydro-beta-erythroidine (10(-8)-10(-4) M) produced a concentration-dependent block of responses to nicotine (10(-6) M). Approximate IC50 values were 1.6, 0.3 and 0.2 x 10(-6), respectively. Chlorisondamine and mecamylamine blocked responses to nicotine (10(-7)-10(-4) M) insurmountably, whereas dihydro-beta-erythroidine behaved in a surmountable fashion. 5. The occurrence of use-dependent block was tested by briefly pre-exposing the synaptosomes to nicotine during superfusion with antagonist, and determining the response to a subsequent nicotine application. Consistent with a possible channel blocking action, brief pre-exposure to agonist increased the antagonist potency of chlorisondamine (approximately 25 fold). No significant use-dependent block was detected with dihydro-beta-erythroidine.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkadhi K. A., McIsaac R. J. Effect of preganglionic nerve stimulation on sensitivity of the superior cervical ganglion to nicotinic blocking agents. Br J Pharmacol. 1974 Aug;51(4):533–539. doi: 10.1111/j.1476-5381.1974.tb09671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balfour D. J. The effects of nicotine on brain neurotransmitter systems. Pharmacol Ther. 1982;16(2):269–282. doi: 10.1016/0163-7258(82)90058-4. [DOI] [PubMed] [Google Scholar]
- Benwell M. E., Balfour D. J., Anderson J. M. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem. 1988 Apr;50(4):1243–1247. doi: 10.1111/j.1471-4159.1988.tb10600.x. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Chaudieu I., el-Bizri H., Boksa P., Quik M., Esplin B. A., Capek R. The pharmacology of the nicotinic antagonist, chlorisondamine, investigated in rat brain and autonomic ganglion. Br J Pharmacol. 1994 Feb;111(2):397–405. doi: 10.1111/j.1476-5381.1994.tb14748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke P. B. Chronic central nicotinic blockade after a single administration of the bisquaternary ganglion-blocking drug chlorisondamine. Br J Pharmacol. 1984 Oct;83(2):527–535. doi: 10.1111/j.1476-5381.1984.tb16517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke P. B., Fibiger H. C. Reinforced alternation performance is impaired by muscarinic but not by nicotinic receptor blockade in rats. Behav Brain Res. 1990 Jan 22;36(3):203–207. doi: 10.1016/0166-4328(90)90058-m. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Kumar R. Characterization of the locomotor stimulant action of nicotine in tolerant rats. Br J Pharmacol. 1983 Nov;80(3):587–594. doi: 10.1111/j.1476-5381.1983.tb10733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke P. B., Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 1985 Dec 2;348(2):355–358. doi: 10.1016/0006-8993(85)90456-1. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Pert C. B., Pert A. Autoradiographic distribution of nicotine receptors in rat brain. Brain Res. 1984 Dec 10;323(2):390–395. doi: 10.1016/0006-8993(84)90320-2. [DOI] [PubMed] [Google Scholar]
- Conroy W. G., Vernallis A. B., Berg D. K. The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron. 1992 Oct;9(4):679–691. doi: 10.1016/0896-6273(92)90031-8. [DOI] [PubMed] [Google Scholar]
- Corrigall W. A., Franklin K. B., Coen K. M., Clarke P. B. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107(2-3):285–289. doi: 10.1007/BF02245149. [DOI] [PubMed] [Google Scholar]
- Dineley-Miller K., Patrick J. Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Brain Res Mol Brain Res. 1992 Dec;16(3-4):339–344. doi: 10.1016/0169-328x(92)90244-6. [DOI] [PubMed] [Google Scholar]
- Flores C. M., Rogers S. W., Pabreza L. A., Wolfe B. B., Kellar K. J. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol. 1992 Jan;41(1):31–37. [PubMed] [Google Scholar]
- Fudala P. J., Iwamoto E. T. Conditioned aversion after delay place conditioning with nicotine. Psychopharmacology (Berl) 1987;92(3):376–381. doi: 10.1007/BF00210847. [DOI] [PubMed] [Google Scholar]
- GRIMSON K. S., TARAZI A. K., FRAZER J. W., Jr A new orally active quaternary ammonium, ganglion blocking drug capable of reducing blood pressure, Su-3088. Circulation. 1955 May;11(5):733–741. doi: 10.1161/01.cir.11.5.733. [DOI] [PubMed] [Google Scholar]
- Giorguieff-Chesselet M. F., Kemel M. L., Wandscheer D., Glowinski J. Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci. 1979 Oct 1;25(14):1257–1262. doi: 10.1016/0024-3205(79)90469-7. [DOI] [PubMed] [Google Scholar]
- Giorguieff M. F., Le Floc'h M. L., Glowinski J., Besson M. J. Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J Pharmacol Exp Ther. 1977 Mar;200(3):535–544. [PubMed] [Google Scholar]
- Giorguieff M. F., Le Floc'h M. L., Westfall T. C., Glowinski J., Besson M. J. Nicotinic effect of acetylcholine on the release of newly synthesized (3H)dopamine in rat striatal slices and cat caudate nucleus. Brain Res. 1976 Apr 16;106(1):117–131. doi: 10.1016/0006-8993(76)90077-9. [DOI] [PubMed] [Google Scholar]
- Grady S., Marks M. J., Wonnacott S., Collins A. C. Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem. 1992 Sep;59(3):848–856. doi: 10.1111/j.1471-4159.1992.tb08322.x. [DOI] [PubMed] [Google Scholar]
- Imperato A., Mulas A., Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol. 1986 Dec 16;132(2-3):337–338. doi: 10.1016/0014-2999(86)90629-1. [DOI] [PubMed] [Google Scholar]
- Izenwasser S., Jacocks H. M., Rosenberger J. G., Cox B. M. Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem. 1991 Feb;56(2):603–610. doi: 10.1111/j.1471-4159.1991.tb08192.x. [DOI] [PubMed] [Google Scholar]
- Kumar R., Reavill C., Stolerman I. P. Nicotine cue in rats: effects of central administration of ganglion-blocking drugs. Br J Pharmacol. 1987 Jan;90(1):239–246. doi: 10.1111/j.1476-5381.1987.tb16845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingle C. Blockade of cholinergic channels by chlorisondamine on a crustacean muscle. J Physiol. 1983 Jun;339:395–417. doi: 10.1113/jphysiol.1983.sp014723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingle C. Different types of blockade of crustacean acetylcholine-induced currents. J Physiol. 1983 Jun;339:419–437. doi: 10.1113/jphysiol.1983.sp014724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luetje C. W., Patrick J. Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci. 1991 Mar;11(3):837–845. doi: 10.1523/JNEUROSCI.11-03-00837.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marien M., Brien J., Jhamandas K. Regional release of [3H]dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Can J Physiol Pharmacol. 1983 Jan;61(1):43–60. doi: 10.1139/y83-005. [DOI] [PubMed] [Google Scholar]
- Marks M. J., Collins A. C. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol Pharmacol. 1982 Nov;22(3):554–564. [PubMed] [Google Scholar]
- Marks M. J., Farnham D. A., Grady S. R., Collins A. C. Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes. J Pharmacol Exp Ther. 1993 Feb;264(2):542–552. [PubMed] [Google Scholar]
- Martin B. R., Onaivi E. S., Martin T. J. What is the nature of mecamylamine's antagonism of the central effects of nicotine? Biochem Pharmacol. 1989 Oct 15;38(20):3391–3397. doi: 10.1016/0006-2952(89)90106-8. [DOI] [PubMed] [Google Scholar]
- Mundy W. R., Iwamoto E. T. Actions of nicotine on the acquisition of an autoshaped lever-touch response in rats. Psychopharmacology (Berl) 1988;94(2):267–274. doi: 10.1007/BF00176858. [DOI] [PubMed] [Google Scholar]
- Neely A., Lingle C. J. Trapping of an open-channel blocker at the frog neuromuscular acetylcholine channel. Biophys J. 1986 Nov;50(5):981–986. doi: 10.1016/S0006-3495(86)83538-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PLUMMER A. J., TRAPOLD J. H., SCHNEIDER J. A., MAXWELL R. A., EARL A. E. Ganglionic blockade by a new bisquaternary series, including chlorisondamine dimethochloride. J Pharmacol Exp Ther. 1955 Oct;115(2):172–184. [PubMed] [Google Scholar]
- Rapier C., Lunt G. G., Wonnacott S. Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem. 1990 Mar;54(3):937–945. doi: 10.1111/j.1471-4159.1990.tb02341.x. [DOI] [PubMed] [Google Scholar]
- Rapier C., Lunt G. G., Wonnacott S. Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: concentration dependence and repetitive stimulation. J Neurochem. 1988 Apr;50(4):1123–1130. doi: 10.1111/j.1471-4159.1988.tb10582.x. [DOI] [PubMed] [Google Scholar]
- Reavill C., Stolerman I. P., Kumar R., Garcha H. S. Chlorisondamine blocks acquisition of the conditioned taste aversion produced by (-)-nicotine. Neuropharmacology. 1986 Sep;25(9):1067–1069. doi: 10.1016/0028-3908(86)90204-2. [DOI] [PubMed] [Google Scholar]
- Reavill C., Walther B., Stolerman I. P., Testa B. Behavioural and pharmacokinetic studies on nicotine, cytisine and lobeline. Neuropharmacology. 1990 Jul;29(7):619–624. doi: 10.1016/0028-3908(90)90022-j. [DOI] [PubMed] [Google Scholar]
- Rowell P. P., Wonnacott S. Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. J Neurochem. 1990 Dec;55(6):2105–2110. doi: 10.1111/j.1471-4159.1990.tb05802.x. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER J. A., MOORE R. F., Jr Electrophysiological investigation of chlorisondamine dimethochloride (Ecolid T.M.) a new ganglionic blocking agent. Proc Soc Exp Biol Med. 1955 Jul;89(3):450–453. doi: 10.3181/00379727-89-21841. [DOI] [PubMed] [Google Scholar]
- Sasakawa N., Ishii K., Kato R. Nicotinic receptor-mediated intracellular calcium release in cultured bovine adrenal chromaffin cells. Neurosci Lett. 1986 Jan 30;63(3):275–279. doi: 10.1016/0304-3940(86)90369-1. [DOI] [PubMed] [Google Scholar]
- Schwartz R. D., Kellar K. J. In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem. 1985 Aug;45(2):427–433. doi: 10.1111/j.1471-4159.1985.tb04005.x. [DOI] [PubMed] [Google Scholar]
- Schwartz R. D., Lehmann J., Kellar K. J. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem. 1984 May;42(5):1495–1498. doi: 10.1111/j.1471-4159.1984.tb02818.x. [DOI] [PubMed] [Google Scholar]
- Schwartz R. D., McGee R., Jr, Kellar K. J. Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain. Mol Pharmacol. 1982 Jul;22(1):56–62. [PubMed] [Google Scholar]
- Stolerman I. P., Pratt J. A., Garcha H. S., Giardini V., Kumar R. Nicotine cue in rats analysed with drugs acting on cholinergic and 5-hydroxytryptamine mechanisms. Neuropharmacology. 1983 Sep;22(9):1029–1037. doi: 10.1016/0028-3908(83)90021-7. [DOI] [PubMed] [Google Scholar]
- Traber D. L., Carter V. L., Jr, Gardier R. W. Regarding a necessary condition for ganglionic blockade with competitive agents. Arch Int Pharmacodyn Ther. 1967 Aug;168(2):339–343. [PubMed] [Google Scholar]
- Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L. W. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol. 1989 Jun 8;284(2):314–335. doi: 10.1002/cne.902840212. [DOI] [PubMed] [Google Scholar]
- Wonnacott S. Brain nicotine binding sites. Hum Toxicol. 1987 Sep;6(5):343–353. doi: 10.1177/096032718700600502. [DOI] [PubMed] [Google Scholar]
- Wonnacott S., Irons J., Rapier C., Thorne B., Lunt G. G. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res. 1989;79:157–163. doi: 10.1016/s0079-6123(08)62475-9. [DOI] [PubMed] [Google Scholar]
- el-Bizri H., Clarke P. B. Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine administered in vivo. Br J Pharmacol. 1994 Feb;111(2):414–418. doi: 10.1111/j.1476-5381.1994.tb14750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]