Abstract
1. Plasma protein extravasation (PPE) responses in guinea-pig skin have been measured using accumulation of intravenously injected 125I-labelled human serum albumin (125I-HSA). 2. The nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 0.1 mumol/site) significantly reduced responses to bradykinin (BK; 0.5 nmol/site) or histamine (4.5 nmol/site) when co-injected with the inflammatory mediators. D-NAME (0.1 mumol/site) had no significant effect. 3. L-NAME (0.01-0.1 mumol/site) appeared to produce greater shifts of the dose-response curve to BK (0.1-3 nmol/site) than of that to histamine (2.3-27 nmol/site). Both 0.01 and 0.1 mumol L-NAME/site significantly reduced the response to BK (0.5 nmol/site) whereas only the higher dose of L-NAME produced a significant reduction in the response to histamine (4.5 nmol/site). 4. The inhibitory effect of L-NAME (0.1 mumol/site) on the response to BK but not on that to histamine was significantly reversed by L-arginine (L-Arg; 10 mumol/site). D-arginine (D-Arg; 10 mumol/site) had no significant effect in either case. 5. L-Arg (10 mumol/site) significantly enhanced the response to BK but inhibited that to histamine. D-Arg (10 mumol/site) had no significant effect on BK but significantly inhibited histamine. L-Lysine (L-Lys: 10 mumol/site) had no significant effect on the response to either BK or histamine. 6. L-Arg (100 mM) had a significant inhibitory effect on isometric contractions to histamine, but not BK in guinea-pig ileum in vitro. D-Arg (100 mM) also significantly inhibited histamine responses whereas L-Lys (100 mM) had no effect. 7. The alpha-adrenoceptor agonist, phenylephrine (0.3 or 6 nmol/site) inhibited matched responses to BK (0.5 nmol/site) or histamine (5.4 nmol/site) to comparable degrees, but gave significant inhibition only at the higher dose.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arfors K. E., Rutili G., Svensjö E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl. 1979;463:93–103. [PubMed] [Google Scholar]
- Becker C. G., Nachman R. L. Contractile proteins of endothelial cells, platelets and smooth muscle. Am J Pathol. 1973 Apr;71(1):1–22. [PMC free article] [PubMed] [Google Scholar]
- Beets J. L., Paul W. Actions of locally administered adrenoceptor agonists on increased plasma protein extravasation and blood flow in guinea-pig skin. Br J Pharmacol. 1980 Nov;70(3):461–467. doi: 10.1111/j.1476-5381.1980.tb08724.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brain S. D., Crossman D. C., Buckley T. L., Williams T. J. Endothelin-1: demonstration of potent effects on the microcirculation of humans and other species. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S147–S150. [PubMed] [Google Scholar]
- Brain S. D., Tippins J. R., Williams T. J. Endothelin induces potent microvascular constriction. Br J Pharmacol. 1988 Dec;95(4):1005–1007. doi: 10.1111/j.1476-5381.1988.tb11731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARR J., WILHELM D. L. THE EVALUATION OF INCREASED VASCULAR PERMEABILITY IN THE SKIN OF GUINEA-PIGS. Aust J Exp Biol Med Sci. 1964 Aug;42:511–522. doi: 10.1038/icb.1964.48. [DOI] [PubMed] [Google Scholar]
- Fox J., Galey F., Wayland H. Action of histamine on the mesenteric microvasculature. Microvasc Res. 1980 Jan;19(1):108–126. doi: 10.1016/0026-2862(80)90087-4. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Henriques M. G., Rae G. A., Cordeiro R. S., Williams T. J. Endothelin-1 inhibits PAF-induced paw oedema and pleurisy in the mouse. Br J Pharmacol. 1992 Jul;106(3):579–582. doi: 10.1111/j.1476-5381.1992.tb14378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. R., Williams T. J., Brain S. D. Evidence that endogenous nitric oxide modulates oedema formation induced by substance P. Eur J Pharmacol. 1990 Dec 4;191(3):481–484. doi: 10.1016/0014-2999(90)94184-y. [DOI] [PubMed] [Google Scholar]
- Ialenti A., Ianaro A., Moncada S., Di Rosa M. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol. 1992 Feb 11;211(2):177–182. doi: 10.1016/0014-2999(92)90526-a. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. A., Hecker M., Anggård E. E., Vane J. R. Cultured endothelial cells maintain their L-arginine level despite the continuous release of EDRF. Eur J Pharmacol. 1990 Jul 17;182(3):573–576. doi: 10.1016/0014-2999(90)90058-e. [DOI] [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell S. R., Persson C. G. Beta-adrenoceptor mediated inhibition by terbutaline of histamine effects on vascular permeability. Br J Pharmacol. 1978 Mar;62(3):321–324. doi: 10.1111/j.1476-5381.1978.tb08463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T. J., Morley J. Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature. 1973 Nov 23;246(5430):215–217. doi: 10.1038/246215a0. [DOI] [PubMed] [Google Scholar]
- Williams T. J. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. 1979 Mar;65(3):517–524. doi: 10.1111/j.1476-5381.1979.tb07860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]