Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jan;111(1):250–258. doi: 10.1111/j.1476-5381.1994.tb14052.x

Modulation of cardiac L-type Ca2+ channels by GTP gamma S in response to isoprenaline, forskolin and photoreleased nucleotides.

R Z Kozlowski 1, L J Goodstadt 1, V W Twist 1, T Powell 1
PMCID: PMC1910028  PMID: 8012703

Abstract

1. Using the patch-clamp recording technique, we have investigated the effects of chronic intracellular application of guanosine thiotriphosphate (GTP gamma S) by cell dialysis, on the potentiation of L-type Ca2+ currents (ICa) by isoprenaline and forskolin and also by GTP gamma S and cyclic AMP released intracellularly by flash-photolysis of their caged derivatives. 2. GTP gamma S prevented enhancement of ICa by isoprenaline with an IC50 of approximately 10 microM and considerably reduced the ability of forskolin to increase ICa. In addition GTP gamma S also reduced the time-to-peak response for potentiation of ICa by forskolin. Responses to forskolin were abolished by co-dialysis of cells with the cyclic AMP antagonist, Rp-adenosine-3'-5'-mono-thionophosphate (Rp-cAMPS). 3. Photoreleased GTP gamma S (PR-GTP gamma S; approximately 23 microM) generally induced a biphasic increase in ICa. This response was also inhibited by chronic intracellular dialysis with GTP gamma S with an IC50 of approximately 1 microM. 4. Pretreatment of cells with pertussis toxin (PTX) reversed the inhibitory effect of 100 microM GTP gamma S on isoprenaline-induced stimulation of ICa. However, PTX pretreatment did not restore the activating action of PR-GTP gamma S inhibited by chronic application of GTP gamma S. 5. Photoreleased cyclic AMP (approximately 5 microM; PR-cyclic AMP) increased peak ICa. This effect was inhibited by dialysis of cells with Rp-cAMPS and by stimulation of ICa by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Co-dialysis of cells with uncaged GTP gamma S reduced the time-to-peak for PR-cyclic AMP mediated activation of ICa but did not affect the magnitude of the response. 6. It is concluded that chronically applied GTP gamma S can (i) inhibit activation of ICa by isoprenaline by interacting with a PTX-sensitive guanosine nucleotide binding (G-) protein located upstream of adenylate cyclase (possibly Gi) and (ii) accelerate the response to cyclic AMP dependent phosphorylation possibly by interacting with a G-protein coupled directly to the channel. 7. In view of this diverse range of effects, care should be taken when using GTP gamma S to characterize G-protein-mediated events, since the resulting physiological response may be due to activation of several G-protein containing pathways.

Full text

PDF
250

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belles B., Malécot C. O., Hescheler J., Trautwein W. "Run-down" of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch. 1988 Apr;411(4):353–360. doi: 10.1007/BF00587713. [DOI] [PubMed] [Google Scholar]
  2. Cavalié A., Allen T. J., Trautwein W. Role of the GTP-binding protein Gs in the beta-adrenergic modulation of cardiac Ca channels. Pflugers Arch. 1991 Nov;419(5):433–443. doi: 10.1007/BF00370785. [DOI] [PubMed] [Google Scholar]
  3. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  4. Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
  5. Hescheler J., Kameyama M., Trautwein W. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch. 1986 Aug;407(2):182–189. doi: 10.1007/BF00580674. [DOI] [PubMed] [Google Scholar]
  6. Hescheler J., Tang M., Jastorff B., Trautwein W. On the mechanism of histamine induced enhancement of the cardiac Ca2+ current. Pflugers Arch. 1987 Sep;410(1-2):23–29. doi: 10.1007/BF00581891. [DOI] [PubMed] [Google Scholar]
  7. Hwang T. C., Horie M., Nairn A. C., Gadsby D. C. Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance. J Gen Physiol. 1992 Apr;99(4):465–489. doi: 10.1085/jgp.99.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kameyama M., Hofmann F., Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985 Oct;405(3):285–293. doi: 10.1007/BF00582573. [DOI] [PubMed] [Google Scholar]
  9. Katada T., Oinuma M., Ui M. Mechanisms for inhibition of the catalytic activity of adenylate cyclase by the guanine nucleotide-binding proteins serving as the substrate of islet-activating protein, pertussis toxin. J Biol Chem. 1986 Apr 15;261(11):5215–5221. [PubMed] [Google Scholar]
  10. Kozlowski R. Z., Goodstadt L. J., Twist V. W., Powell T. Activation of L-type Ca2+ currents in cardiac myocytes by photoreleased GTP. Proc Biol Sci. 1992 Oct 22;250(1327):35–42. doi: 10.1098/rspb.1992.0127. [DOI] [PubMed] [Google Scholar]
  11. Kozlowski R. Z., Twist V. W., Brown A. M., Powell T. Flash photolysis of intracellular caged GTP gamma S increases L-type Ca2+ currents in cardiac myocytes. Am J Physiol. 1991 Nov;261(5 Pt 2):H1665–H1670. doi: 10.1152/ajpheart.1991.261.5.H1665. [DOI] [PubMed] [Google Scholar]
  12. Milligan G. Mechanisms of multifunctional signalling by G protein-linked receptors. Trends Pharmacol Sci. 1993 Jun;14(6):239–244. doi: 10.1016/0165-6147(93)90019-g. [DOI] [PubMed] [Google Scholar]
  13. Nakajima T., Sugimoto T., Kurachi Y. Effects of anions on the G protein-mediated activation of the muscarinic K+ channel in the cardiac atrial cell membrane. Intracellular chloride inhibition of the GTPase activity of GK. J Gen Physiol. 1992 May;99(5):665–682. doi: 10.1085/jgp.99.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pelzer S., Shuba Y. M., Asai T., Codina J., Birnbaumer L., McDonald T. F., Pelzer D. Membrane-delimited stimulation of heart cell calcium current by beta-adrenergic signal-transducing Gs protein. Am J Physiol. 1990 Jul;259(1 Pt 2):H264–H267. doi: 10.1152/ajpheart.1990.259.1.H264. [DOI] [PubMed] [Google Scholar]
  15. Powell T., Terrar D. A., Twist V. W. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol. 1980 May;302:131–153. doi: 10.1113/jphysiol.1980.sp013234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scamps F., Rybin V., Puceat M., Tkachuk V., Vassort G. A Gs protein couples P2-purinergic stimulation to cardiac Ca channels without cyclic AMP production. J Gen Physiol. 1992 Oct;100(4):675–701. doi: 10.1085/jgp.100.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shuba Y. M., Hesslinger B., Trautwein W., McDonald T. F., Pelzer D. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol. 1990 May;424:205–228. doi: 10.1113/jphysiol.1990.sp018063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Trautwein W., Hescheler J. Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol. 1990;52:257–274. doi: 10.1146/annurev.ph.52.030190.001353. [DOI] [PubMed] [Google Scholar]
  19. Van Haastert P. J., Van Driel R., Jastorff B., Baraniak J., Stec W. J., De Wit R. J. Competitive cAMP antagonists for cAMP-receptor proteins. J Biol Chem. 1984 Aug 25;259(16):10020–10024. [PubMed] [Google Scholar]
  20. Yatani A., Codina J., Imoto Y., Reeves J. P., Birnbaumer L., Brown A. M. A G protein directly regulates mammalian cardiac calcium channels. Science. 1987 Nov 27;238(4831):1288–1292. doi: 10.1126/science.2446390. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES