Abstract
1. In helical strips of dog superficial temporal arteries with intact endothelium, substance P elicited a concentration-related relaxation with an EC50 of 2.8 (2.4-3.2) x 10(-10) M. 2. The relaxant response to the peptide in low concentrations (1-4 x 10(-10) M) sufficient to produce approximately half maximal relaxation was not inhibited by indomethacin, but was markedly suppressed by NG-nitro-L-arginine (L-NOARG), a nitric oxide (NO) synthase inhibitor, and by endothelium denudation. 3. High concentration (10(-7) M) of substance P produced marked relaxations in endothelium-intact strips. Removal of the endothelium attenuated the relaxation, and indomethacin or tranylcypromine suppressed the endothelium-independent relaxation. In indomethacin-treated strips with intact endothelium, L-NOARG attenuated but did not abolish the relaxation. The residual, L-NOARG-resistant relaxation was not significantly inhibited by ouabain, glibenclamide or tetraethylammonium. 4. Substance P (10(-7) M) increased the levels of cyclic GMP and cyclic AMP. The increase in cyclic GMP was abolished by endothelium denudation and treatment with L-NOARG, whereas the cyclic AMP increment was abolished by indomethacin. 5. Three different mechanisms may be involved in the substance P-induced relaxation: (1) an endothelium-dependent relaxation mediated by the release of NO from the endothelium, resulting in an increase of cyclic GMP (low and high concentrations of the peptide); (2) an endothelium-independent relaxation in association with cyclic AMP increment caused by prostaglandin I2 released from subendothelial tissues (high concentration), and (3) another endothelium-dependent relaxation possibly mediated by unidentified mediator(s) released from the endothelium (high concentration).
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrol R. P., Hughes V. M., Krueger C. A., Cook D. A. Detection of endothelium in cerebral blood vessels. J Pharmacol Methods. 1984 Oct;12(3):213–219. doi: 10.1016/0160-5402(84)90062-7. [DOI] [PubMed] [Google Scholar]
- Bolton T. B., Clapp L. H. Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br J Pharmacol. 1986 Apr;87(4):713–723. doi: 10.1111/j.1476-5381.1986.tb14589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chester A. H., O'Neil G. S., Tadjkarimi S., Palmer R. M., Moncada S., Yacoub M. H. The role of nitric oxide in mediating endothelium dependent relaxations in the human epicardial coronary artery. Int J Cardiol. 1990 Dec;29(3):305–309. doi: 10.1016/0167-5273(90)90118-o. [DOI] [PubMed] [Google Scholar]
- Cowan C. L., Cohen R. A. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and -independent responses. Am J Physiol. 1991 Sep;261(3 Pt 2):H830–H835. doi: 10.1152/ajpheart.1991.261.3.H830. [DOI] [PubMed] [Google Scholar]
- Drummond P. D., Lance J. W. Extracranial vascular changes and the source of pain in migraine headache. Ann Neurol. 1983 Jan;13(1):32–37. doi: 10.1002/ana.410130108. [DOI] [PubMed] [Google Scholar]
- Feletou M., Vanhoutte P. M. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988 Mar;93(3):515–524. doi: 10.1111/j.1476-5381.1988.tb10306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
- Goadsby P. J., Edvinsson L., Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988 Feb;23(2):193–196. doi: 10.1002/ana.410230214. [DOI] [PubMed] [Google Scholar]
- Gryglewski R. J., Bunting S., Moncada S., Flower R. J., Vane J. R. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins. 1976 Nov;12(5):685–713. doi: 10.1016/0090-6980(76)90047-2. [DOI] [PubMed] [Google Scholar]
- Hoeffner U., Feletou M., Flavahan N. A., Vanhoutte P. M. Canine arteries release two different endothelium-derived relaxing factors. Am J Physiol. 1989 Jul;257(1 Pt 2):H330–H333. doi: 10.1152/ajpheart.1989.257.1.H330. [DOI] [PubMed] [Google Scholar]
- Matsumoto T., Kinoshita M., Toda N. Mechanisms of endothelium-dependent responses to vasoactive agents in isolated porcine coronary arteries. J Cardiovasc Pharmacol. 1993 Feb;21(2):228–234. doi: 10.1097/00005344-199302000-00007. [DOI] [PubMed] [Google Scholar]
- Miller V. M. Selective production of endothelium-derived nitric oxide in canine femoral veins. Am J Physiol. 1991 Sep;261(3 Pt 2):H677–H682. doi: 10.1152/ajpheart.1991.261.3.H677. [DOI] [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moskowitz M. A. The neurobiology of vascular head pain. Ann Neurol. 1984 Aug;16(2):157–168. doi: 10.1002/ana.410160202. [DOI] [PubMed] [Google Scholar]
- O'Neil G. S., Chester A. H., Allen S. P., Luu T. N., Tadjkarimi S., Ridley P., Khagani A., Musumeci F., Yacoub M. H. Endothelial function of human gastroepiploic artery. Implications for its use as a bypass graft. J Thorac Cardiovasc Surg. 1991 Oct;102(4):561–565. [PubMed] [Google Scholar]
- Olesen J. Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications. Cerebrovasc Brain Metab Rev. 1991 Spring;3(1):1–28. [PubMed] [Google Scholar]
- Onoue H., Nakamura N., Toda N. Endothelium-dependent and -independent responses to vasodilators of isolated dog cerebral arteries. Stroke. 1988 Nov;19(11):1388–1394. doi: 10.1161/01.str.19.11.1388. [DOI] [PubMed] [Google Scholar]
- Pawloski J. R., Chapnick B. M. LTD4 and bradykinin evoke endothelium-dependent relaxation of the renal vein: dissimilar mechanisms. Am J Physiol. 1991 Jul;261(1 Pt 2):H88–H95. doi: 10.1152/ajpheart.1991.261.1.H88. [DOI] [PubMed] [Google Scholar]
- Richard V., Tanner F. C., Tschudi M., Lüscher T. F. Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries. Am J Physiol. 1990 Nov;259(5 Pt 2):H1433–H1439. doi: 10.1152/ajpheart.1990.259.5.H1433. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Vanhoutte P. M. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries. J Pharmacol Exp Ther. 1985 Oct;235(1):81–86. [PubMed] [Google Scholar]
- Toda N., Kawakami M., Yamazaki M., Okamura T. Comparison of endothelium-dependent responses of monkey cerebral and temporal arteries. Br J Pharmacol. 1991 Apr;102(4):805–810. doi: 10.1111/j.1476-5381.1991.tb12256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toda N., Minami Y., Okamura T. Inhibitory effects of L-NG-nitro-arginine on the synthesis of EDRF and the cerebroarterial response to vasodilator nerve stimulation. Life Sci. 1990;47(4):345–351. doi: 10.1016/0024-3205(90)90593-g. [DOI] [PubMed] [Google Scholar]
- Toda N., Okamura T. Reciprocal regulation by putatively nitroxidergic and adrenergic nerves of monkey and dog temporal arterial tone. Am J Physiol. 1991 Dec;261(6 Pt 2):H1740–H1745. doi: 10.1152/ajpheart.1991.261.6.H1740. [DOI] [PubMed] [Google Scholar]
- Uddman R., Edvinsson L., Hara H. Axonal tracing of autonomic nerve fibers to the superficial temporal artery in the rat. Cell Tissue Res. 1989 Jun;256(3):559–565. doi: 10.1007/BF00225604. [DOI] [PubMed] [Google Scholar]
- Uddman R., Edvinsson L., Jansen I., Stiernholm P., Jensen K., Olesen J., Sundler F. Peptide-containing nerve fibres in human extracranial tissue: a morphological basis for neuropeptide involvement in extracranial pain? Pain. 1986 Dec;27(3):391–399. doi: 10.1016/0304-3959(86)90162-4. [DOI] [PubMed] [Google Scholar]
- Uddman R., Edvinsson L. Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev. 1989 Fall;1(3):230–252. [PubMed] [Google Scholar]
