Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Mar;111(3):717–722. doi: 10.1111/j.1476-5381.1994.tb14796.x

Class I and III antiarrhythmic actions of prazosin in guinea-pig papillary muscles.

O Pérez 1, C Valenzuela 1, E Delpón 1, J Tamargo 1
PMCID: PMC1910072  PMID: 8019750

Abstract

1. The electrophysiological effects of prazosin, a highly specific alpha 1-adrenoceptor antagonist, on transmembrane action potential characteristics were studied in guinea-pig papillary muscles. 2. At concentrations between 10(-6) M and 10(-5) M, prazosin produced a concentration-dependent decrease in the maximum upstroke velocity (Vmax) and a progressive lengthening of the action potential duration at 50% (APD50) and 90% (APD90) of repolarization. The prolongation of the APD50 and APD90 values was independent of the frequency of stimulation. The prolongation of the ADP90 was accompanied by a parallel lengthening of the effective refractory period (ERP) and thus, the ERP/APD90 ratio remained unaltered at all drug concentrations tested. 3. In the presence of prazosin, 5 x 10(-6) M, the percentage of Vmax block increased with the frequency of stimulation, the inhibitory effect being more marked at fast driving rates (frequency-dependent Vmax block). At 3 Hz, the onset kinetics of the frequency-dependent Vmax block was better fitted by a biexponential function, the K values of the fast (K1) and slow components (K2) being 0.254 +/- 0.037 AP-1 and 0.045 +/- 0.010 AP-1, respectively. However, prazosin did not produce tonic Vmax block. 4. The recovery time constant (tau re) from the frequency-dependent Vmax block was prolonged from 19.6 +/- 2.5 ms to 24.4 +/- 5.5 s. This result indicated that prazosin can be considered as a slow kinetics Na channel blocker. 5. Prazosin, 5 x 10(-6) M, shifted the membrane responsiveness curve in a hyperpolarizing direction, which indicated that the blockade of sodium channels increased at less negative potentials (voltage-dependent Vmax block).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey B. G. Cardiac alpha adrenoceptors. Can J Physiol Pharmacol. 1980 Oct;58(10):1145–1157. doi: 10.1139/y80-174. [DOI] [PubMed] [Google Scholar]
  2. Benfey B. G. Function of myocardial alpha-adrenoceptors. Life Sci. 1982 Jul 12;31(2):101–112. doi: 10.1016/0024-3205(82)90421-0. [DOI] [PubMed] [Google Scholar]
  3. Campbell T. J. Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol. 1983 Sep;80(1):33–40. doi: 10.1111/j.1476-5381.1983.tb11046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Courtney K. R. Quantitative structure/activity relations based on use-dependent block and repriming kinetics in myocardium. J Mol Cell Cardiol. 1987 Mar;19(3):319–330. doi: 10.1016/s0022-2828(87)80599-0. [DOI] [PubMed] [Google Scholar]
  5. Delpón E., Valenzuela C., Pérez O., Tamargo J. Electrophysiological effects of CRE-1087 in guinea-pig ventricular muscles. Br J Pharmacol. 1992 Oct;107(2):515–520. doi: 10.1111/j.1476-5381.1992.tb12776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dukes I. D., Vaughan Williams E. M. Electrophysiological effects of alpha-adrenoceptor antagonists in rabbit sino-atrial node, cardiac Purkinje cells and papillary muscles. Br J Pharmacol. 1984 Oct;83(2):419–426. doi: 10.1111/j.1476-5381.1984.tb16502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ettinger S., Gould L., Carmichael J. A., Tashjian R. J. Phentolamine: use in digitalis-induced arrhythmias. Canine experiments. Am Heart J. 1969 May;77(5):636–640. doi: 10.1016/0002-8703(69)90548-1. [DOI] [PubMed] [Google Scholar]
  8. Ferrier G. R., Carmeliet E. Effects of alpha-adrenergic agents on transient inward current in rabbit Purkinje fibers. J Mol Cell Cardiol. 1990 Feb;22(2):191–200. doi: 10.1016/0022-2828(90)91115-n. [DOI] [PubMed] [Google Scholar]
  9. Giles W. R., Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol. 1988 Nov;405:123–145. doi: 10.1113/jphysiol.1988.sp017325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Himmel H. M., Glossmann H., Ravens U. Naftopidil, a new alpha-adrenoceptor blocking agent with calcium antagonistic properties: characterization of Ca2+ antagonistic effects. J Cardiovasc Pharmacol. 1991 Feb;17(2):213–221. doi: 10.1097/00005344-199102000-00006. [DOI] [PubMed] [Google Scholar]
  11. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  12. Hondeghem L. M., Snyders D. J. Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation. 1990 Feb;81(2):686–690. doi: 10.1161/01.cir.81.2.686. [DOI] [PubMed] [Google Scholar]
  13. Matsuura H., Ehara T., Imoto Y. An analysis of the delayed outward current in single ventricular cells of the guinea-pig. Pflugers Arch. 1987 Dec;410(6):596–603. doi: 10.1007/BF00581319. [DOI] [PubMed] [Google Scholar]
  14. Nattel S. Antiarrhythmic drug classifications. A critical appraisal of their history, present status, and clinical relevance. Drugs. 1991 May;41(5):672–701. doi: 10.2165/00003495-199141050-00002. [DOI] [PubMed] [Google Scholar]
  15. Northover B. J. A comparison of the electrophysiological actions of phentolamine with those of some other antiarrhythmic drugs on tissues isolated from the rat heart. Br J Pharmacol. 1983 Sep;80(1):85–93. doi: 10.1111/j.1476-5381.1983.tb11053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quadbeck J., Reiter M. Adrenoceptors in cardiac ventricular muscle and changes in duration of action potential caused by noradrenaline and isoprenaline. Naunyn Schmiedebergs Arch Pharmacol. 1975;288(4):403–414. doi: 10.1007/BF00501285. [DOI] [PubMed] [Google Scholar]
  17. Rosen M. R., Weiss R. M., Danilo P., Jr Effect of alpha adrenergic agonists and blockers on Purkinje fiber transmembrane potentials and automaticity in the dog. J Pharmacol Exp Ther. 1984 Dec;231(3):566–571. [PubMed] [Google Scholar]
  18. Sada H. Effect of phentolamine, alprenolol and prenylamine on maximum rate of rise of action potential in guinea-pig papillary muscles. Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;304(3):191–201. doi: 10.1007/BF00507958. [DOI] [PubMed] [Google Scholar]
  19. Sheridan D. J., Penkoske P. A., Sobel B. E., Corr P. B. Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest. 1980 Jan;65(1):161–171. doi: 10.1172/JCI109647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Silke B., Lakhani Z. M., Taylor S. H. Pharmacokinetic and pharmacodynamic studies with prazosin in chronic heart failure. J Cardiovasc Pharmacol. 1981 Mar-Apr;3(2):329–335. doi: 10.1097/00005344-198103000-00011. [DOI] [PubMed] [Google Scholar]
  21. Stewart J. R., Burmeister W. E., Burmeister J., Lucchesi B. R. Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol. 1980 Jan-Feb;2(1):77–91. doi: 10.1097/00005344-198001000-00009. [DOI] [PubMed] [Google Scholar]
  22. Tamargo J., Valenzuela C., Delpón E. New insights into the pharmacology of sodium channel blockers. Eur Heart J. 1992 Nov;13 (Suppl F):2–13. doi: 10.1093/eurheartj/13.suppl_f.2. [DOI] [PubMed] [Google Scholar]
  23. Tohse N., Nakaya H., Kanno M. Electrophysiological effects of amosulalol, a new alpha- and beta-adrenoceptor blocker, in isolated rabbit papillary muscles. Eur J Pharmacol. 1986 Jun 24;125(3):411–419. doi: 10.1016/0014-2999(86)90797-1. [DOI] [PubMed] [Google Scholar]
  24. Valenzuela C., Sanchez-Chapula J. Electrophysiologic interactions between mexiletine-quinidine and mexiletine-ropitoin in guinea pig papillary muscle. J Cardiovasc Pharmacol. 1989 Nov;14(5):783–789. doi: 10.1097/00005344-198911000-00016. [DOI] [PubMed] [Google Scholar]
  25. Vargaftig B., Coignet J. L. A critical evaluation of three methods for the study of adrenergic beta-blocking and anti-arrhythmic agents. Eur J Pharmacol. 1969 Apr;6(1):49–55. doi: 10.1016/0014-2999(69)90064-8. [DOI] [PubMed] [Google Scholar]
  26. Vaughan Williams E. M. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984 Apr;24(4):129–147. doi: 10.1002/j.1552-4604.1984.tb01822.x. [DOI] [PubMed] [Google Scholar]
  27. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  28. Williams R. S., Dukes D. F., Lefkowitz R. J. Subtype specificity of alpha-adrenergic receptors in rat heart. J Cardiovasc Pharmacol. 1981 May-Jun;3(3):522–531. doi: 10.1097/00005344-198105000-00011. [DOI] [PubMed] [Google Scholar]
  29. Wood A. J., Bolli P., Simpson F. O. Prazosin in normal subjects: plasma levels, blood pressure and heart rate. Br J Clin Pharmacol. 1976 Feb;3(1):199–201. doi: 10.1111/j.1365-2125.1976.tb00592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES