Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Mar;111(3):930–934. doi: 10.1111/j.1476-5381.1994.tb14828.x

Reversal of CRF- and dopamine-induced stimulation of colonic motility by CCK and igmesine (JO 1784) in the rat.

M Gué 1, C Gleïzes-Escala 1, C Del Rio-Lacheze 1, J L Junien 1, L Buéno 1
PMCID: PMC1910073  PMID: 7912631

Abstract

1. The role of dopamine in the genesis of corticotropin releasing factor (CRF)- and emotional stress (ES)-induced stimulation of colonic motility, as well as the mechanism of antagonistic action of cholecystokinin octapeptide (CCK-8s) and igmesine (alpha sigma receptor ligand, formerly JO 1784) on dopamine-induced colonic hypermotility, have been investigated in the rat. 2. ES and i.c.v. injection of CRF (0.5 microgram kg-1) increased the frequency of colonic spike bursts by 63% and 114%, respectively. Prior i.c.v. administration of (+)-SCH 23390 (a D1 receptor antagonist, 10 micrograms kg-1) significantly (P < 0.05) reduced the CRF- and ES-induced increase in colonic spike burst; whereas, sulpiride (a D2 receptor antagonist, 10 micrograms kg-1) blocked the CRF-induced stimulation of colonic spike bursts but had no effect on the colonic response to stress. 3. I.c.v. injection of dopamine (100 micrograms kg-1), increased colonic spike burst frequency by 54%. (+)-SKF 38393 (5 micrograms kg-1), a selective D1 receptor agonist, and quinpirole (5 micrograms kg-1), a selective D2 receptor agonist, increased colonic spike burst frequency by 71% and 70% respectively. CCK-8s (0.1 microgram kg-1) and igmesine (0.1 microgram kg-1) injected i.c.v. completely prevented the stimulatory effects of dopamine, (+)-SKF 38393 and quinpirole. 4. Previous i.c.v. injection of devazepide, a CCKA receptor antagonist, (10 micrograms kg-1) antagonized the inhibitory effects of both CCK-8s and igmesine injected i.c.v. on dopamine-induced colonic hyperkinesia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
930

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bueno L., Gue M., Fabre C., Junien J. L. Involvement of central dopamine and D1 receptors in stress-induced colonic motor alterations in rats. Brain Res Bull. 1992 Aug;29(2):135–140. doi: 10.1016/0361-9230(92)90018-s. [DOI] [PubMed] [Google Scholar]
  2. Bunney B. S., Grace A. A., Hommer D. W., Skirboll L. R. Effect of cholecystokinin of the activity of midbrain dopaminergic neurons. Adv Biochem Psychopharmacol. 1982;33:429–436. [PubMed] [Google Scholar]
  3. Cabib S., Kempf E., Schleef C., Oliverio A., Puglisi-Allegra S. Effects of immobilization stress on dopamine and its metabolites in different brain areas of the mouse: role of genotype and stress duration. Brain Res. 1988 Feb 16;441(1-2):153–160. doi: 10.1016/0006-8993(88)91393-5. [DOI] [PubMed] [Google Scholar]
  4. Crawley J. N. Cholecystokinin-dopamine interactions. Trends Pharmacol Sci. 1991 Jun;12(6):232–236. doi: 10.1016/0165-6147(91)90558-a. [DOI] [PubMed] [Google Scholar]
  5. Deutch A. Y., Tam S. Y., Roth R. H. Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res. 1985 Apr 29;333(1):143–146. doi: 10.1016/0006-8993(85)90134-9. [DOI] [PubMed] [Google Scholar]
  6. Fadda F., Argiolas A., Melis M. R., Tissari A. H., Onali P. L., Gessa G. L. Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci. 1978 Nov 27;23(22):2219–2224. doi: 10.1016/0024-3205(78)90207-2. [DOI] [PubMed] [Google Scholar]
  7. Freeman A. S., Bunney B. S. The effects of phencyclidine and N-allylnormetazocine on midbrain dopamine neuronal activity. Eur J Pharmacol. 1984 Sep 17;104(3-4):287–293. doi: 10.1016/0014-2999(84)90404-7. [DOI] [PubMed] [Google Scholar]
  8. Gue M., Junien J. L., Bueno L. Conditioned emotional response in rats enhances colonic motility through the central release of corticotropin-releasing factor. Gastroenterology. 1991 Apr;100(4):964–970. doi: 10.1016/0016-5085(91)90270-u. [DOI] [PubMed] [Google Scholar]
  9. Gue M., Junien J. L., Del Rio C., Bueno L. Neuropeptide Y and sigma ligand (JO 1784) suppress stress-induced colonic motor disturbances in rats through sigma and cholecystokinin receptors. J Pharmacol Exp Ther. 1992 Jun;261(3):850–855. [PubMed] [Google Scholar]
  10. Gundlach A. L., Largent B. L., Snyder S. H. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci. 1986 Jun;6(6):1757–1770. doi: 10.1523/JNEUROSCI.06-06-01757.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gundlach A. L., Largent B. L., Snyder S. H. Phencyclidine and sigma opiate receptors in brain: biochemical and autoradiographical differentiation. Eur J Pharmacol. 1985 Jul 31;113(3):465–466. doi: 10.1016/0014-2999(85)90100-1. [DOI] [PubMed] [Google Scholar]
  12. Gué M., Alary C., Rio-Lacheze C. D., Junien J. L., Buéno L. Comparative involvement of 5-HT1, 5-HT2 and 5-HT3 receptors in stress-induced colonic motor alterations in rats. Eur J Pharmacol. 1993 Mar 23;233(2-3):193–199. doi: 10.1016/0014-2999(93)90050-r. [DOI] [PubMed] [Google Scholar]
  13. Herman J. P., Guillonneau D., Dantzer R., Scatton B., Semerdjian-Rouquier L., Le Moal M. Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 1982 Jun 21;30(25):2207–2214. doi: 10.1016/0024-3205(82)90295-8. [DOI] [PubMed] [Google Scholar]
  14. Hökfelt T., Rehfeld J. F., Skirboll L., Ivemark B., Goldstein M., Markey K. Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature. 1980 Jun 12;285(5765):476–478. doi: 10.1038/285476a0. [DOI] [PubMed] [Google Scholar]
  15. Jiménez M., Buéno L. Inhibitory effects of neuropeptide Y (NPY) on CRF and stress-induced cecal motor response in rats. Life Sci. 1990;47(3):205–211. doi: 10.1016/0024-3205(90)90321-h. [DOI] [PubMed] [Google Scholar]
  16. Junien J. L., Gue M., Bueno L. Neuropeptide Y and sigma ligand (JO 1784) act through a Gi protein to block the psychological stress and corticotropin-releasing factor-induced colonic motor activation in rats. Neuropharmacology. 1991 Oct;30(10):1119–1124. doi: 10.1016/0028-3908(91)90142-x. [DOI] [PubMed] [Google Scholar]
  17. Kaneyuki H., Yokoo H., Tsuda A., Yoshida M., Mizuki Y., Yamada M., Tanaka M. Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Res. 1991 Aug 23;557(1-2):154–161. doi: 10.1016/0006-8993(91)90129-j. [DOI] [PubMed] [Google Scholar]
  18. Katoh A., Nabeshima T., Kameyama T. Interaction between enkephalinergic and dopaminergic systems in stressful situations. Eur J Pharmacol. 1991 Jan 25;193(1):95–99. doi: 10.1016/0014-2999(91)90205-5. [DOI] [PubMed] [Google Scholar]
  19. Lane R. F., Blaha C. D., Phillips A. G. In vivo electrochemical analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus accumbens. Brain Res. 1986 Nov 5;397(1):200–204. doi: 10.1016/0006-8993(86)91388-0. [DOI] [PubMed] [Google Scholar]
  20. Liang R. Z., Wu M., Yim C. C., Mogenson G. J. Effects of dopamine agonists on excitatory inputs to nucleus accumbens neurons from the amygdala: modulatory actions of cholecystokinin. Brain Res. 1991 Jul 19;554(1-2):85–94. doi: 10.1016/0006-8993(91)90175-u. [DOI] [PubMed] [Google Scholar]
  21. Marshall F. H., Barnes S., Hughes J., Woodruff G. N., Hunter J. C. Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. J Neurochem. 1991 Mar;56(3):917–922. doi: 10.1111/j.1471-4159.1991.tb02009.x. [DOI] [PubMed] [Google Scholar]
  22. Martinez J. A., Buéno L. Buspirone inhibits corticotropin-releasing factor and stress-induced cecal motor response in rats by acting through 5-HT1A receptors. Eur J Pharmacol. 1991 Sep 24;202(3):379–383. doi: 10.1016/0014-2999(91)90282-u. [DOI] [PubMed] [Google Scholar]
  23. Nabeshima T., Katoh A., Kameyama T. Inhibition of enkephalin degradation attenuated stress-induced motor suppression (conditioned suppression of motility). J Pharmacol Exp Ther. 1988 Jan;244(1):303–309. [PubMed] [Google Scholar]
  24. Rukebusch M., Fioramonti J. Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology. 1975 Jun;68(6):1500–1508. [PubMed] [Google Scholar]
  25. Skirboll L. R., Hommer D. W. Electrophysiological studies of the role of cholecystokinin in the substantia nigra and its interactions with dopamine. Ann N Y Acad Sci. 1985;448:275–282. doi: 10.1111/j.1749-6632.1985.tb29923.x. [DOI] [PubMed] [Google Scholar]
  26. Voigt M., Wang R. Y., Westfall T. C. Cholecystokinin octapeptides alter the release of endogenous dopamine from the rat nucleus accumbens in vitro. J Pharmacol Exp Ther. 1986 Apr;237(1):147–153. [PubMed] [Google Scholar]
  27. Yim C. C., Mogenson G. J. Electrophysiological evidence of modulatory interaction between dopamine and cholecystokinin in the nucleus accumbens. Brain Res. 1991 Feb 8;541(1):12–20. doi: 10.1016/0006-8993(91)91068-c. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES