Abstract
The E8 open reading frame of bovine papillomavirus type 4 encodes a small hydrophobic polypeptide which contributes to cell transformation by conferring anchorage-independent growth. Using an in vitro translation system, we show that the E8 polypeptide binds to ductin, the 16-kDa proteolipid that forms transmembrane channels in both gap junctions and vacuolar H+-ATPase. This association is not due to nonspecific hydrophobic interactions. PPA1, a Saccharomyces cerevisiae polypeptide homologous (with 25% identity) to ductin, does not complex with E8. Furthermore, E5B, structurally similar to E8 but with no transforming activity, does not form a complex with ductin. Primary bovine fibroblasts expressing E8 show a loss of gap junctional intercellular communication, and it is suggested that this results from the interaction between E8 and ductin.
Full Text
The Full Text of this article is available as a PDF (414.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apperson M., Jensen R. E., Suda K., Witte C., Yaffe M. P. A yeast protein, homologous to the proteolipid of the chromaffin granule proton-ATPase, is important for cell growth. Biochem Biophys Res Commun. 1990 Apr 30;168(2):574–579. doi: 10.1016/0006-291x(90)92359-8. [DOI] [PubMed] [Google Scholar]
- Burkhardt A., Willingham M., Gay C., Jeang K. T., Schlegel R. The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology. 1989 May;170(1):334–339. doi: 10.1016/0042-6822(89)90391-7. [DOI] [PubMed] [Google Scholar]
- Campo M. S., Coggins L. W. Molecular cloning of bovine papillomavirus genomes and comparison of their sequence homologies by heteroduplex mapping. J Gen Virol. 1982 Dec;63(2):255–264. doi: 10.1099/0022-1317-63-2-255. [DOI] [PubMed] [Google Scholar]
- Campo M. S., O'Neil B. W., Barron R. J., Jarrett W. F. Experimental reproduction of the papilloma-carcinoma complex of the alimentary canal in cattle. Carcinogenesis. 1994 Aug;15(8):1597–1601. doi: 10.1093/carcin/15.8.1597. [DOI] [PubMed] [Google Scholar]
- Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature. 1982 Oct 7;299(5883):529–534. doi: 10.1038/299529a0. [DOI] [PubMed] [Google Scholar]
- Conrad M., Bubb V. J., Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol. 1993 Oct;67(10):6170–6178. doi: 10.1128/jvi.67.10.6170-6178.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlop J., Jones P. C., Finbow M. E. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 1995 Aug 1;14(15):3609–3616. doi: 10.1002/j.1460-2075.1995.tb00030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finbow M. E., Eliopoulos E. E., Jackson P. J., Keen J. N., Meagher L., Thompson P., Jones P., Findlay J. B. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase. Protein Eng. 1992 Jan;5(1):7–15. doi: 10.1093/protein/5.1.7. [DOI] [PubMed] [Google Scholar]
- Finbow M. E., John S., Kam E., Apps D. K., Pitts J. D. Disposition and orientation of ductin (DCCD-reactive vacuolar H(+)-ATPase subunit) in mammalian membrane complexes. Exp Cell Res. 1993 Aug;207(2):261–270. doi: 10.1006/excr.1993.1192. [DOI] [PubMed] [Google Scholar]
- Finbow M. E., Pitts J. D., Goldstein D. J., Schlegel R., Findlay J. B. The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Mol Carcinog. 1991;4(6):441–444. doi: 10.1002/mc.2940040605. [DOI] [PubMed] [Google Scholar]
- Finbow M. E., Pitts J. D. Is the gap junction channel--the connexon--made of connexin or ductin? J Cell Sci. 1993 Oct;106(Pt 2):463–471. doi: 10.1242/jcs.106.2.463. [DOI] [PubMed] [Google Scholar]
- Franchini G., Mulloy J. C., Koralnik I. J., Lo Monico A., Sparkowski J. J., Andresson T., Goldstein D. J., Schlegel R. The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J Virol. 1993 Dec;67(12):7701–7704. doi: 10.1128/jvi.67.12.7701-7704.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. J., Finbow M. E., Andresson T., McLean P., Smith K., Bubb V., Schlegel R. Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H(+)-ATPases. Nature. 1991 Jul 25;352(6333):347–349. doi: 10.1038/352347a0. [DOI] [PubMed] [Google Scholar]
- Goldstein D. J., Schlegel R. The E5 oncoprotein of bovine papillomavirus binds to a 16 kd cellular protein. EMBO J. 1990 Jan;9(1):137–145. doi: 10.1002/j.1460-2075.1990.tb08089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaggar R. T., Pennie W. D., Smith K. T., Jackson M. E., Campo M. S. Cooperation between bovine papillomavirus type 4 and ras in the morphological transformation of primary bovine fibroblasts. J Gen Virol. 1990 Dec;71(Pt 12):3041–3046. doi: 10.1099/0022-1317-71-12-3041. [DOI] [PubMed] [Google Scholar]
- Jarrett W. F., McNeil P. E., Grimshaw W. T., Selman I. E., McIntyre W. I. High incidence area of cattle cancer with a possible interaction between an environmental carcinogen and a papilloma virus. Nature. 1978 Jul 20;274(5668):215–217. doi: 10.1038/274215a0. [DOI] [PubMed] [Google Scholar]
- Leitch B., Finbow M. E. The gap junction-like form of a vacuolar proton channel component appears not to be an artifact of isolation: an immunocytochemical localization study. Exp Cell Res. 1990 Oct;190(2):218–226. doi: 10.1016/0014-4827(90)90189-h. [DOI] [PubMed] [Google Scholar]
- Mandel M., Moriyama Y., Hulmes J. D., Pan Y. C., Nelson H., Nelson N. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5521–5524. doi: 10.1073/pnas.85.15.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin P., Vass W. C., Schiller J. T., Lowy D. R., Velu T. J. The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors. Cell. 1989 Oct 6;59(1):21–32. doi: 10.1016/0092-8674(89)90866-0. [DOI] [PubMed] [Google Scholar]
- Mesnil M., Yamasaki H. Cell-cell communication and growth control of normal and cancer cells: evidence and hypothesis. Mol Carcinog. 1993;7(1):14–17. doi: 10.1002/mc.2940070103. [DOI] [PubMed] [Google Scholar]
- Miao G. H., Hong Z., Verma D. P. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol. 1992 Jul;118(2):481–490. doi: 10.1083/jcb.118.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson N. Organellar proton-ATPases. Curr Opin Cell Biol. 1992 Aug;4(4):654–660. doi: 10.1016/0955-0674(92)90086-r. [DOI] [PubMed] [Google Scholar]
- O'Banion M. K., Winn V. D., Settleman J., Young D. A. Genetic definition of a new bovine papillomavirus type 1 open reading frame, E5B, that encodes a hydrophobic protein involved in altering host-cell protein processing. J Virol. 1993 Jun;67(6):3427–3434. doi: 10.1128/jvi.67.6.3427-3434.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oelze I., Kartenbeck J., Crusius K., Alonso A. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol. 1995 Jul;69(7):4489–4494. doi: 10.1128/jvi.69.7.4489-4494.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennie W. D., Grindlay G. J., Cairney M., Campo M. S. Analysis of the transforming functions of bovine papillomavirus type 4. Virology. 1993 Apr;193(2):614–620. doi: 10.1006/viro.1993.1169. [DOI] [PubMed] [Google Scholar]
- Pitts J. D., Kam E. Communication compartments in mixed cell cultures. Exp Cell Res. 1985 Feb;156(2):439–449. doi: 10.1016/0014-4827(85)90550-6. [DOI] [PubMed] [Google Scholar]
- Serras F., Buultjens T. E., Finbow M. E. Inhibition of dye-coupling in Patella (Mollusca) embryos by microinjection of antiserum against nephrops (Arthropoda) gap junctions. Exp Cell Res. 1988 Nov;179(1):282–288. doi: 10.1016/0014-4827(88)90367-9. [DOI] [PubMed] [Google Scholar]
- Straight S. W., Herman B., McCance D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol. 1995 May;69(5):3185–3192. doi: 10.1128/jvi.69.5.3185-3192.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straight S. W., Hinkle P. M., Jewers R. J., McCance D. J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993 Aug;67(8):4521–4532. doi: 10.1128/jvi.67.8.4521-4532.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waters C. M., Overholser K. A., Sorkin A., Carpenter G. Analysis of the influences of the E5 transforming protein on kinetic parameters of epidermal growth factor binding and metabolism. J Cell Physiol. 1992 Aug;152(2):253–263. doi: 10.1002/jcp.1041520206. [DOI] [PubMed] [Google Scholar]