Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Mar;111(3):777–786. doi: 10.1111/j.1476-5381.1994.tb14805.x

5-Hydroxytryptamine receptor-mediated phosphoinositide hydrolysis in canine cultured tracheal smooth muscle cells.

C M Yang 1, Y L Yo 1, J T Hsieh 1, R Ong 1
PMCID: PMC1910084  PMID: 8019756

Abstract

1. 5-Hydroxytryptamine (5-HT) has been shown to induce contraction of tracheal smooth muscle. However, the mechanisms of action of 5-HT are not known. We therefore investigated the effects of 5-HT on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and its regulation in canine cultured tracheal smooth muscle cells (TSMCs) labelled with [3H]-inositol. 5-HT-induced inositol phosphates (IPs) accumulation was time- and dose-dependent with a half-maximal response (EC50) and a maximal response at 0.38 +/- 0.05 and 10 microM, respectively. 2. Ketanserin and mianserin (10 and 100 nM), 5-HT2 receptor antagonists, were equipotent in blocking the 5-HT-induced IPs accumulation with pKB values of 8.46 and 8.21, respectively. In contrast, the dose-response curves of 5-HT-induced IPs accumulation were not shifted until the concentrations of NAN-190 and metoclopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased up to 10 microM. 3. Pretreatment of TSMCs with pertussis toxin or cholera toxin did not inhibit the 5-HT-induced IPs accumulation, but partially inhibited the AlF(4-)-induced IPs response. 4. Stimulation of IPs accumulation by 5-HT required the presence of external Ca2+ and was blocked by EGTA. The addition of Ca2+ (3-620 nM) to digitonin-permeabilized TSMCs directly stimulated IPs accumulation. A further Ca(2+)-dependent increase in IPs accumulation was obtained by inclusion of either guanosine 5'-O-(3-thiotriphoshate) (GTP gamma S) or 5-HT. The combination of GTP gamma S and 5-HT elicited an additive effect on IPs accumulation. 5. Treatment with phorbol 12-myristate 13-acetate (PMA, 1 microM, 30 min) abolished the 5-HT-induced IPs accumulation. The concentrations of PMA that gave a half-maximal and maximal inhibition of 5-HT-induced IPs accumulation were 2.2 +/- 0.4 nM and 1 microM, n = 3, respectively. The protein kinase C (PKC) activator, 4 alpha-phorbol 12,13-didecanoate, at 1 microM, did not influence this response. The inhibitory effect of PMA was reversed by staurosporine, a PKC inhibitor, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. 6. The site of this inhibition was further investigated by examining the effect of PMA on AlF(4-)-induced IPs accumulation in canine TSMCs. AlF(4-)-stimulated IPs accumulation was inhibited by PMA treatment, suggesting that the effect of PMA is distal to the 5-HT receptor.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aub D. L., Frey E. A., Sekura R. D., Cote T. E. Coupling of the thyrotropin-releasing hormone receptor to phospholipase C by a GTP-binding protein distinct from the inhibitory or stimulatory GTP-binding protein. J Biol Chem. 1986 Jul 15;261(20):9333–9340. [PubMed] [Google Scholar]
  2. Baumgartner R. A., Wills-Karp M., Kaufman M. J., Munakata M., Hirshman C. Serotonin induces constriction and relaxation of the guinea pig airway. J Pharmacol Exp Ther. 1990 Oct;255(1):165–173. [PubMed] [Google Scholar]
  3. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  5. Bigay J., Deterre P., Pfister C., Chabre M. Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 1985 Oct 28;191(2):181–185. doi: 10.1016/0014-5793(85)80004-1. [DOI] [PubMed] [Google Scholar]
  6. Bockaert J., Sebben M., Dumuis A. Pharmacological characterization of 5-hydroxytryptamine4(5-HT4) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. Mol Pharmacol. 1990 Mar;37(3):408–411. [PubMed] [Google Scholar]
  7. Bradford P. G., Rubin R. P. Guanine nucleotide regulation of phospholipase C activity in permeabilized rabbit neutrophils. Inhibition by pertussis toxin and sensitization to submicromolar calcium concentrations. Biochem J. 1986 Oct 1;239(1):97–102. doi: 10.1042/bj2390097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breeze R. G., Wheeldon E. B. The cells of the pulmonary airways. Am Rev Respir Dis. 1977 Oct;116(4):705–777. doi: 10.1164/arrd.1977.116.4.705. [DOI] [PubMed] [Google Scholar]
  9. Buckner C. K., Dea D., Liberati N., Krell R. D. A pharmacologic examination of receptors mediating serotonin-induced bronchoconstriction in the anesthetized guinea pig. J Pharmacol Exp Ther. 1991 Apr;257(1):26–34. [PubMed] [Google Scholar]
  10. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  11. Cohen M. L., Schenck K. W., Colbert W., Wittenauer L. Role of 5-HT2 receptors in serotonin-induced contractions of nonvascular smooth muscle. J Pharmacol Exp Ther. 1985 Mar;232(3):770–774. [PubMed] [Google Scholar]
  12. Cohen M. L., Wittenauer L. A. Serotonin receptor activation of phosphoinositide turnover in uterine, fundal, vascular, and tracheal smooth muscle. J Cardiovasc Pharmacol. 1987 Aug;10(2):176–181. doi: 10.1097/00005344-198708000-00007. [DOI] [PubMed] [Google Scholar]
  13. Conn P. J., Sanders-Bush E., Hoffman B. J., Hartig P. R. A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4086–4088. doi: 10.1073/pnas.83.11.4086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Connolly T. M., Lawing W. J., Jr, Majerus P. W. Protein kinase C phosphorylates human platelet inositol trisphosphate 5'-phosphomonoesterase, increasing the phosphatase activity. Cell. 1986 Sep 12;46(6):951–958. doi: 10.1016/0092-8674(86)90077-2. [DOI] [PubMed] [Google Scholar]
  15. Coughlin S. R., Moskowitz M. A., Levine L. Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem Pharmacol. 1984 Feb 15;33(4):692–695. doi: 10.1016/0006-2952(84)90330-7. [DOI] [PubMed] [Google Scholar]
  16. Eberhard D. A., Holz R. W. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem. 1987 Nov;49(5):1634–1643. doi: 10.1111/j.1471-4159.1987.tb01037.x. [DOI] [PubMed] [Google Scholar]
  17. Eberhard D. A., Holz R. W. Regulation of the formation of inositol phosphates by calcium, guanine nucleotides and ATP in digitonin-permeabilized bovine adrenal chromaffin cells. Biochem J. 1991 Oct 15;279(Pt 2):447–453. doi: 10.1042/bj2790447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fisher S. K., Domask L. M., Roland R. M. Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2+ requirements for phospholipase C activation. Mol Pharmacol. 1989 Feb;35(2):195–204. [PubMed] [Google Scholar]
  19. Frazer A., Maayani S., Wolfe B. B. Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol. 1990;30:307–348. doi: 10.1146/annurev.pa.30.040190.001515. [DOI] [PubMed] [Google Scholar]
  20. Galron R., Bdolah A., Kloog Y., Sokolovsky M. Endothelin/sarafotoxin receptor induced phosphoinositide turnover: effects of pertussis and cholera toxins and of phorbol ester. Biochem Biophys Res Commun. 1990 Sep 28;171(3):949–954. doi: 10.1016/0006-291x(90)90776-j. [DOI] [PubMed] [Google Scholar]
  21. Gown A. M., Vogel A. M., Gordon D., Lu P. L. A smooth muscle-specific monoclonal antibody recognizes smooth muscle actin isozymes. J Cell Biol. 1985 Mar;100(3):807–813. doi: 10.1083/jcb.100.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grandordy B. M., Cuss F. M., Sampson A. S., Palmer J. B., Barnes P. J. Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: relationship to contraction and muscarinic receptor occupancy. J Pharmacol Exp Ther. 1986 Jul;238(1):273–279. [PubMed] [Google Scholar]
  23. Gutowski S., Smrcka A., Nowak L., Wu D. G., Simon M., Sternweis P. C. Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J Biol Chem. 1991 Oct 25;266(30):20519–20524. [PubMed] [Google Scholar]
  24. Hamamori Y., Yokoyama M., Yamada M., Akita H., Goshima K., Fukuzaki H. 5-Hydroxytryptamine induces phospholipase C-mediated hydrolysis of phosphoinositides through 5-hydroxytryptamine-2 receptors in cultured fetal mouse ventricular myocytes. Circ Res. 1990 Jun;66(6):1474–1483. doi: 10.1161/01.res.66.6.1474. [DOI] [PubMed] [Google Scholar]
  25. Hashimoto T., Hirata M., Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol. 1985 Sep;86(1):191–199. doi: 10.1111/j.1476-5381.1985.tb09449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jones L. G., Goldstein D., Brown J. H. Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ Res. 1988 Feb;62(2):299–305. doi: 10.1161/01.res.62.2.299. [DOI] [PubMed] [Google Scholar]
  27. Kendall D. A., Nahorski S. R. 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther. 1985 May;233(2):473–479. [PubMed] [Google Scholar]
  28. Kotlikoff M. I., Murray R. K., Reynolds E. E. Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C561–C566. doi: 10.1152/ajpcell.1987.253.4.C561. [DOI] [PubMed] [Google Scholar]
  29. Leeb-Lundberg L. M., Cotecchia S., Lomasney J. W., DeBernardis J. F., Lefkowitz R. J., Caron M. G. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5651–5655. doi: 10.1073/pnas.82.17.5651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lemoine H., Kaumann A. J. Allosteric properties of 5-HT2 receptors in tracheal smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jun;333(2):91–97. doi: 10.1007/BF00506509. [DOI] [PubMed] [Google Scholar]
  31. Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
  32. Macquin-Mavier I., Jarreau P. H., Istin N., Harf A. 5-Hydroxytryptamine-induced bronchoconstriction in the guinea-pig: effect of 5-HT2 receptor activation on acetylcholine release. Br J Pharmacol. 1991 Apr;102(4):1003–1007. doi: 10.1111/j.1476-5381.1991.tb12291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maricq A. V., Peterson A. S., Brake A. J., Myers R. M., Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science. 1991 Oct 18;254(5030):432–437. doi: 10.1126/science.1718042. [DOI] [PubMed] [Google Scholar]
  34. Marsh K. A., Hill S. J. Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells. Br J Pharmacol. 1992 Oct;107(2):443–447. doi: 10.1111/j.1476-5381.1992.tb12765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Martin M. W., Evans T., Harden T. K. Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not Ni. Biochem J. 1985 Jul 15;229(2):539–544. doi: 10.1042/bj2290539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Merritt J. E., Taylor C. W., Rubin R. P., Putney J. W., Jr Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem J. 1986 Jun 1;236(2):337–343. doi: 10.1042/bj2360337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Meurs H., Roffel A. F., Postema J. B., Timmermans A., Elzinga C. R., Kauffman H. F., Zaagsma J. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur J Pharmacol. 1988 Nov 1;156(2):271–274. doi: 10.1016/0014-2999(88)90331-7. [DOI] [PubMed] [Google Scholar]
  38. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  39. Orellana S. A., Solski P. A., Brown J. H. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem. 1985 May 10;260(9):5236–5239. [PubMed] [Google Scholar]
  40. Rana R. S., Hokin L. E. Role of phosphoinositides in transmembrane signaling. Physiol Rev. 1990 Jan;70(1):115–164. doi: 10.1152/physrev.1990.70.1.115. [DOI] [PubMed] [Google Scholar]
  41. Rizzo C. A., Kreutner W., Chapman R. W. 5-HT3 receptors augment neuronal, cholinergic contractions in guinea pig trachea. Eur J Pharmacol. 1993 Mar 30;234(1):109–112. doi: 10.1016/0014-2999(93)90712-q. [DOI] [PubMed] [Google Scholar]
  42. Rosenberg S. M., Berry G. T., Yandrasitz J. R., Grunstein M. M. Maturational regulation of inositol 1,4,5-trisphosphate metabolism in rabbit airway smooth muscle. J Clin Invest. 1991 Dec;88(6):2032–2038. doi: 10.1172/JCI115531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Roth B. L., Chuang D. M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 1987 Aug 31;41(9):1051–1064. doi: 10.1016/0024-3205(87)90621-7. [DOI] [PubMed] [Google Scholar]
  44. Roth B. L., Nakaki T., Chuang D. M., Costa E. 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther. 1986 Aug;238(2):480–485. [PubMed] [Google Scholar]
  45. Ryu S. H., Kim U. H., Wahl M. I., Brown A. B., Carpenter G., Huang K. P., Rhee S. G. Feedback regulation of phospholipase C-beta by protein kinase C. J Biol Chem. 1990 Oct 15;265(29):17941–17945. [PubMed] [Google Scholar]
  46. Scherer N. M., Nathanson N. M. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase. Biochemistry. 1990 Sep 11;29(36):8475–8483. doi: 10.1021/bi00488a039. [DOI] [PubMed] [Google Scholar]
  47. Schoeffter P., Hoyer D. 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):285–292. doi: 10.1007/BF00168512. [DOI] [PubMed] [Google Scholar]
  48. Smith C. D., Cox C. C., Snyderman R. Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science. 1986 Apr 4;232(4746):97–100. doi: 10.1126/science.3006254. [DOI] [PubMed] [Google Scholar]
  49. Smrcka A. V., Hepler J. R., Brown K. O., Sternweis P. C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science. 1991 Feb 15;251(4995):804–807. doi: 10.1126/science.1846707. [DOI] [PubMed] [Google Scholar]
  50. Sternweis P. C., Smrcka A. V. Regulation of phospholipase C by G proteins. Trends Biochem Sci. 1992 Dec;17(12):502–506. doi: 10.1016/0968-0004(92)90340-f. [DOI] [PubMed] [Google Scholar]
  51. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  52. Van Amsterdam R. G., Meurs H., Brouwer F., Postema J. B., Timmermans A., Zaagsma J. Role of phosphoinositide metabolism in functional antagonism of airway smooth muscle contraction by beta-adrenoceptor agonists. Eur J Pharmacol. 1989 May 11;172(2):175–183. doi: 10.1016/0922-4106(89)90008-4. [DOI] [PubMed] [Google Scholar]
  53. Watson S. P., Lapetina E. G. 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid hydrolysis. Proc Natl Acad Sci U S A. 1985 May;82(9):2623–2626. doi: 10.1073/pnas.82.9.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Watts S. W., Cohen M. L. Characterization of the contractile serotonergic receptor in guinea pig trachea with agonists and antagonists. J Pharmacol Exp Ther. 1992 Mar;260(3):1101–1106. [PubMed] [Google Scholar]
  55. Yang C. M., Chou S. P., Sung T. C. Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Br J Pharmacol. 1991 Nov;104(3):613–618. doi: 10.1111/j.1476-5381.1991.tb12478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zifa E., Fillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev. 1992 Sep;44(3):401–458. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES