Abstract
1. The effects of (+)-amphetamine on electrically evoked dopamine overflow were examined in the rat brain slice containing either anterior caudate putamen (aCPu) or nucleus accumbens (NAc), by fast cyclic voltammetry. 2. (+)-Amphetamine (1 microM) caused a time-dependent increase in the extracellular concentration of dopamine ([dopamine]ex) due to displacement of dopamine from terminal sites. After a 40 min superfusion, [dopamine]ex in the aCPu was 0.617 +/- 0.117 microM and in the NAc was 0.270 +/- 0.04 microM. Pretreatment with (-)-sulpiride (1 microM) did not affect this action of (+)-amphetamine. 3. (+)-Amphetamine (1 microM) exhibited a complex and time-dependent effect on electrically stimulated dopamine overflow, evoked by 1p, 4p/10 Hz and 20p/20 Hz. 4. In the aCPu, (+)-amphetamine (1 microM) resulted in attenuation of dopamine overflow due to 1p and 4p/10 Hz but potentiation of dopamine overflow to 20p/20 Hz. (-)-Sulpiride (1 microM) prior to (+)-amphetamine (1 microM) reversed the attenuation of dopamine overflow evoked by 1p and 4p/10 Hz but had no significant effect on dopamine overflow evoked by 20p/20 Hz. 5. (+)-Amphetamine (1 microM) potentiated dopamine overflow in the NAc to all three stimuli. (-)-Sulpiride (1 microM) prior to (+)-amphetamine (1 microM), resulted initially, in a further potentiation of overflow, followed by a time-dependent attenuation of dopamine overflow to all three stimuli. 6. t1/2, the rate of removal of [dopamine]ex following electrical stimulation was not significantly different in the aCPu and NAc for any of the stimulation conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzaro A. J., Rutledge C. O. Selectivity of release of norepinephrine, dopamine and 5-hydroxytryptamine by amphetamine in various regions of rat brain. Biochem Pharmacol. 1973 Nov 15;22(22):2801–2813. doi: 10.1016/0006-2952(73)90147-0. [DOI] [PubMed] [Google Scholar]
- Beal M. F., Martin J. B. Topographical dopamine and serotonin distribution and turnover in rat striatum. Brain Res. 1985 Dec 9;358(1-2):10–15. doi: 10.1016/0006-8993(85)90942-4. [DOI] [PubMed] [Google Scholar]
- Bull D. R., Palij P., Sheehan M. J., Millar J., Stamford J. A., Kruk Z. L., Humphrey P. P. Application of fast cyclic voltammetry to measurement of electrically evoked dopamine overflow from brain slices in vitro. J Neurosci Methods. 1990 Apr;32(1):37–44. doi: 10.1016/0165-0270(90)90069-r. [DOI] [PubMed] [Google Scholar]
- Connor C. E., Kuczenski R. Evidence that amphetamine and Na+ gradient reversal increase striatal synaptosomal dopamine synthesis through carrier-mediated efflux of dopamine. Biochem Pharmacol. 1986 Sep 15;35(18):3123–3130. doi: 10.1016/0006-2952(86)90396-5. [DOI] [PubMed] [Google Scholar]
- Fischer J. F., Cho A. K. Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther. 1979 Feb;208(2):203–209. [PubMed] [Google Scholar]
- Freeman A. S., Meltzer L. T., Bunney B. S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 1985 May 20;36(20):1983–1994. doi: 10.1016/0024-3205(85)90448-5. [DOI] [PubMed] [Google Scholar]
- Guix T., Hurd Y. L., Ungerstedt U. Amphetamine enhances extracellular concentrations of dopamine and acetylcholine in dorsolateral striatum and nucleus accumbens of freely moving rats. Neurosci Lett. 1992 Apr 13;138(1):137–140. doi: 10.1016/0304-3940(92)90490-x. [DOI] [PubMed] [Google Scholar]
- Hafizi S., Palij P., Stamford J. A. Activity of two primary human metabolites of nomifensine on stimulated efflux and uptake of dopamine in the striatum: in vitro voltammetric data in slices of rat brain. Neuropharmacology. 1992 Aug;31(8):817–824. doi: 10.1016/0028-3908(92)90046-r. [DOI] [PubMed] [Google Scholar]
- Herdon H., Strupish J., Nahorski S. R. Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: effects of depolarizing stimuli, amphetamine and synthesis inhibition. Brain Res. 1985 Dec 2;348(2):309–320. doi: 10.1016/0006-8993(85)90450-0. [DOI] [PubMed] [Google Scholar]
- Horn A. S., Coyle J. T., Snyder S. H. Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol Pharmacol. 1971 Jan;7(1):66–80. [PubMed] [Google Scholar]
- Hyttel J. Inhibition of [3H]dopamine accumulation in rat striatal synaptosomes by psychotropic drugs. Biochem Pharmacol. 1978 Apr 1;27(7):1063–1068. doi: 10.1016/0006-2952(78)90159-4. [DOI] [PubMed] [Google Scholar]
- Jacocks H. M., 3rd, Cox B. M. Serotonin-stimulated release of [3H]dopamine via reversal of the dopamine transporter in rat striatum and nucleus accumbens: a comparison with release elicited by potassium, N-methyl-D-aspartic acid, glutamic acid and D-amphetamine. J Pharmacol Exp Ther. 1992 Jul;262(1):356–364. [PubMed] [Google Scholar]
- Kalivas P. W. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev. 1993 Jan-Apr;18(1):75–113. doi: 10.1016/0165-0173(93)90008-n. [DOI] [PubMed] [Google Scholar]
- Kamal L. A., Arbilla S., Galzin A. M., Langer S. Z. Amphetamine inhibits the electrically evoked release of [3H]dopamine from slices of the rabbit caudate. J Pharmacol Exp Ther. 1983 Nov;227(2):446–458. [PubMed] [Google Scholar]
- Kuhr W. G., Bigelow J. C., Wightman R. M. In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain. J Neurosci. 1986 Apr;6(4):974–982. doi: 10.1523/JNEUROSCI.06-04-00974.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limberger N., Trout S. J., Kruk Z. L., Starke K. "Real time" measurement of endogenous dopamine release during short trains of pulses in slices of rat neostriatum and nucleus accumbens: role of autoinhibition. Naunyn Schmiedebergs Arch Pharmacol. 1991 Dec;344(6):623–629. doi: 10.1007/BF00174745. [DOI] [PubMed] [Google Scholar]
- Marshall J. F., O'Dell S. J., Navarrete R., Rosenstein A. J. Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum. Neuroscience. 1990;37(1):11–21. doi: 10.1016/0306-4522(90)90187-9. [DOI] [PubMed] [Google Scholar]
- McMillen B. A., German D. C., Shore P. A. Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem Pharmacol. 1980 Nov 15;29(22):3045–3050. doi: 10.1016/0006-2952(80)90444-x. [DOI] [PubMed] [Google Scholar]
- Miller H. H., Shore P. A., Clarke D. E. In vivo monoamine oxidase inhibition by d-amphetamine. Biochem Pharmacol. 1980 May 15;29(10):1347–1354. doi: 10.1016/0006-2952(80)90429-3. [DOI] [PubMed] [Google Scholar]
- Moore K. E. The actions of amphetamine on neurotransmitters: a brief review. Biol Psychiatry. 1977 Jun;12(3):451–462. [PubMed] [Google Scholar]
- O'Connor J. J., Kruk Z. L. Fast cyclic voltammetry can be used to measure stimulated endogenous 5-hydroxytryptamine release in untreated rat brain slices. J Neurosci Methods. 1991 Jun;38(1):25–33. doi: 10.1016/0165-0270(91)90150-x. [DOI] [PubMed] [Google Scholar]
- Palij P., Bull D. R., Sheehan M. J., Millar J., Stamford J., Kruk Z. L., Humphrey P. P. Presynaptic regulation of dopamine release in corpus striatum monitored in vitro in real time by fast cyclic voltammetry. Brain Res. 1990 Feb 12;509(1):172–174. doi: 10.1016/0006-8993(90)90329-a. [DOI] [PubMed] [Google Scholar]
- Parker E. M., Cubeddu L. X. Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther. 1988 Apr;245(1):199–210. [PubMed] [Google Scholar]
- Parker E. M., Cubeddu L. X. Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. I. Release in the absence of vesicular transmitter stores. J Pharmacol Exp Ther. 1986 Apr;237(1):179–192. [PubMed] [Google Scholar]
- Parker E. M., Cubeddu L. X. Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. II. Release in the presence of vesicular transmitter stores. J Pharmacol Exp Ther. 1986 Apr;237(1):193–203. [PubMed] [Google Scholar]
- Patel J., Trout S. J., Kruk Z. L. Regional differences in evoked dopamine efflux in brain slices of rat anterior and posterior caudate putamen. Naunyn Schmiedebergs Arch Pharmacol. 1992 Sep;346(3):267–276. doi: 10.1007/BF00173539. [DOI] [PubMed] [Google Scholar]
- Pelton E. W., 2nd, Kimelberg H. K., Shipherd S. V., Bourke R. S. Dopamine and norepinephrine uptake and metabolism by astroglial cells in culture. Life Sci. 1981 Apr 6;28(14):1655–1663. doi: 10.1016/0024-3205(81)90322-2. [DOI] [PubMed] [Google Scholar]
- Raiteri M., Cerrito F., Cervoni A. M., Levi G. Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther. 1979 Feb;208(2):195–202. [PubMed] [Google Scholar]
- Richards C. D., Tegg W. J. A superfusion chamber suitable for maintaining mammalian brain tissue slices for electrical recording [proceedings]. Br J Pharmacol. 1977 Mar;59(3):526P–526P. [PMC free article] [PubMed] [Google Scholar]
- Sulzer D., Maidment N. T., Rayport S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem. 1993 Feb;60(2):527–535. doi: 10.1111/j.1471-4159.1993.tb03181.x. [DOI] [PubMed] [Google Scholar]
- Trout S. J., Kruk Z. L. Differences in evoked dopamine efflux in rat caudate putamen, nucleus accumbens and tuberculum olfactorium in the absence of uptake inhibition: influence of autoreceptors. Br J Pharmacol. 1992 Jun;106(2):452–458. doi: 10.1111/j.1476-5381.1992.tb14355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Voigtlander P. F., Moore K. E. Involvement of nigro-striatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine. J Pharmacol Exp Ther. 1973 Mar;184(3):542–552. [PubMed] [Google Scholar]
