Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):25–33. doi: 10.1128/jvi.71.1.25-33.1997

From essential to beneficial: glycoprotein D loses importance for replication of bovine herpesvirus 1 in cell culture.

C Schröder 1, G Linde 1, F Fehler 1, G M Keil 1
PMCID: PMC191020  PMID: 8985319

Abstract

Glycoprotein D (gD) of bovine herpesvirus 1 (BHV-1) has been shown to be an essential component of virions involved in virus entry. gD expression in infected cells is also required for direct cell-to-cell spread. Therefore, BHV-1 gD functions are identical in these aspects to those of herpes simplex virus 1 (HSV-1) gD. In contrast, the gD homolog of pseudorabies virus (PrV), although essential for penetration, is not necessary for direct cell-to-cell spread. Cocultivation of cells infected with phenotypically gD-complemented gD- mutant BHV-1/80-221 with noncomplementing cells resulted in the isolation of the cell-to-cell-spreading gD-negative mutant ctcs+BHV-1/80-221, which was present in the gD-null BIV-1 stocks. ctcs+BHV-1/80-221 could be propagated only by mixing infected with uninfected cells, and virions released into the culture medium were noninfectious. Marker rescue experiments revealed that a single point mutation in the first position of codon 450 of the glycoprotein H open reading frame, resulting in a glycine-to-tryptophan exchange, enabled complementation of the gD function for cell-to-cell spread. After about 40 continuous passages of ctcs+BHV-1/80-221-infected cells with noninfected cells, the plaque morphology in the cultures started to change from roundish to comet shaped. Cells from such plaques produced infectious gD- virus, named gD-infBHV-1, which entered cells much more slowly than wild-type BHV-1. In contrast, integration of the gD gene into the genomes of gD-infBHV-1 and ctcs+BHV-1/80-221 resulted in recombinants with accelerated penetration in comparison to wild-type virions. In summary, our results demonstrate that under selective conditions, the function of BHV-1 gD for direct cell-to-cell spread and entry into cells can be compensated for by mutations in other viral (glyco)proteins, leading to the hypothesis that gD is involved in formation of penetration-mediating complexes in the viral envelope of which gH is a component. Together with results for PrV, varicella-zoster virus, which lacks a gD homolog, and Marek's disease virus, whose gD homolog is not essential for infectivity, our data may open new insights into the evolution of alphaherpesviruses.

Full Text

The Full Text of this article is available as a PDF (693.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baranowski E., Dubuisson J., Pastoret P. P., Thiry E. Identification of 108K, 93K, and 42K glycoproteins of bovine herpesvirus-1 by monoclonal antibodies. Arch Virol. 1993;133(1-2):97–111. doi: 10.1007/BF01309747. [DOI] [PubMed] [Google Scholar]
  2. Baranowski E., Dubuisson J., van Drunen Little-van den Hurk S., Babiuk A. L., Michel A., Pastoret P. P., Thiry E. Synthesis and processing of bovine herpesvirus-1 glycoprotein H. Virology. 1995 Jan 10;206(1):651–654. doi: 10.1016/s0042-6822(95)80083-2. [DOI] [PubMed] [Google Scholar]
  3. Bello L. J., Whitbeck J. C., Lawrence W. C. Map location of the thymidine kinase gene of bovine herpesvirus 1. J Virol. 1987 Dec;61(12):4023–4025. doi: 10.1128/jvi.61.12.4023-4025.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinster R. L., Chen H. Y., Trumbauer M., Senear A. W., Warren R., Palmiter R. D. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981 Nov;27(1 Pt 2):223–231. doi: 10.1016/0092-8674(81)90376-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrne K. M., Horohov D. W., Kousoulas K. G. Glycoprotein B of bovine herpesvirus-1 binds heparin. Virology. 1995 May 10;209(1):230–235. doi: 10.1006/viro.1995.1248. [DOI] [PubMed] [Google Scholar]
  6. Bühler B., Keil G. M., Weiland F., Koszinowski U. H. Characterization of the murine cytomegalovirus early transcription unit e1 that is induced by immediate-early proteins. J Virol. 1990 May;64(5):1907–1919. doi: 10.1128/jvi.64.5.1907-1919.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colbère-Garapin F., Horodniceanu F., Kourilsky P., Garapin A. C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981 Jul 25;150(1):1–14. doi: 10.1016/0022-2836(81)90321-1. [DOI] [PubMed] [Google Scholar]
  8. Ebeling A., Keil G. M., Knust E., Koszinowski U. H. Molecular cloning and physical mapping of murine cytomegalovirus DNA. J Virol. 1983 Sep;47(3):421–433. doi: 10.1128/jvi.47.3.421-433.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fehler F., Herrmann J. M., Saalmüller A., Mettenleiter T. C., Keil G. M. Glycoprotein IV of bovine herpesvirus 1-expressing cell line complements and rescues a conditionally lethal viral mutant. J Virol. 1992 Feb;66(2):831–839. doi: 10.1128/jvi.66.2.831-839.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heffner S., Kovács F., Klupp B. G., Mettenleiter T. C. Glycoprotein gp50-negative pseudorabies virus: a novel approach toward a nonspreading live herpesvirus vaccine. J Virol. 1993 Mar;67(3):1529–1537. doi: 10.1128/jvi.67.3.1529-1537.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 1994 Jun;75(Pt 6):1211–1222. doi: 10.1099/0022-1317-75-6-1211. [DOI] [PubMed] [Google Scholar]
  12. Herold B. C., WuDunn D., Soltys N., Spear P. G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991 Mar;65(3):1090–1098. doi: 10.1128/jvi.65.3.1090-1098.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karger A., Mettenleiter T. C. Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology. 1993 Jun;194(2):654–664. doi: 10.1006/viro.1993.1305. [DOI] [PubMed] [Google Scholar]
  14. Keil G. M., Fibi M. R., Koszinowski U. H. Characterization of the major immediate-early polypeptides encoded by murine cytomegalovirus. J Virol. 1985 May;54(2):422–428. doi: 10.1128/jvi.54.2.422-428.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klupp B. G., Baumeister J., Karger A., Visser N., Mettenleiter T. C. Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J Virol. 1994 Jun;68(6):3868–3878. doi: 10.1128/jvi.68.6.3868-3878.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koszinowski U. H., Keil G. M., Volkmer H., Fibi M. R., Ebeling-Keil A., Münch K. The 89,000-Mr murine cytomegalovirus immediate-early protein activates gene transcription. J Virol. 1986 Apr;58(1):59–66. doi: 10.1128/jvi.58.1.59-66.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kühnle G., Collins R. A., Scott J. E., Keil G. M. Bovine interleukins 2 and 4 expressed in recombinant bovine herpesvirus 1 are biologically active secreted glycoproteins. J Gen Virol. 1996 Sep;77(Pt 9):2231–2240. doi: 10.1099/0022-1317-77-9-2231. [DOI] [PubMed] [Google Scholar]
  18. Leung-Tack P., Audonnet J. C., Riviere M. The complete DNA sequence and the genetic organization of the short unique region (US) of the bovine herpesvirus type 1 (ST strain). Virology. 1994 Mar;199(2):409–421. doi: 10.1006/viro.1994.1139. [DOI] [PubMed] [Google Scholar]
  19. Li Y., Liang X., van Drunen Littel-van den Hurk S., Attah-Poku S., Babiuk L. A. Glycoprotein Bb, the N-terminal subunit of bovine herpesvirus 1 gB, can bind to heparan sulfate on the surfaces of Madin-Darby bovine kidney cells. J Virol. 1996 Mar;70(3):2032–2037. doi: 10.1128/jvi.70.3.2032-2037.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li Y., van Drunen Littel-van den Hurk S., Babiuk L. A., Liang X. Characterization of cell-binding properties of bovine herpesvirus 1 glycoproteins B, C, and D: identification of a dual cell-binding function of gB. J Virol. 1995 Aug;69(8):4758–4768. doi: 10.1128/jvi.69.8.4758-4768.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liang X. P., Babiuk L. A., van Drunen Littel-van den Hurk S., Fitzpatrick D. R., Zamb T. J. Bovine herpesvirus 1 attachment to permissive cells is mediated by its major glycoproteins gI, gIII, and gIV. J Virol. 1991 Mar;65(3):1124–1132. doi: 10.1128/jvi.65.3.1124-1132.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liang X., Babiuk L. A., Zamb T. J. Mapping of heparin-binding structures on bovine herpesvirus 1 and pseudorabies virus gIII glycoproteins. Virology. 1993 May;194(1):233–243. doi: 10.1006/viro.1993.1254. [DOI] [PubMed] [Google Scholar]
  23. Liang X., Pyne C., Li Y., Babiuk L. A., Kowalski J. Delineation of the essential function of bovine herpesvirus 1 gD: an indication for the modulatory role of gD in virus entry. Virology. 1995 Mar 10;207(2):429–441. doi: 10.1006/viro.1995.1102. [DOI] [PubMed] [Google Scholar]
  24. Ligas M. W., Johnson D. C. A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J Virol. 1988 May;62(5):1486–1494. doi: 10.1128/jvi.62.5.1486-1494.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mayfield J. E., Good P. J., VanOort H. J., Campbell A. R., Reed D. E. Cloning and cleavage site mapping of DNA from bovine herpesvirus 1 (Cooper strain). J Virol. 1983 Jul;47(1):259–264. doi: 10.1128/jvi.47.1.259-264.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McGeoch D. J. Evolutionary relationships of virion glycoprotein genes in the S regions of alphaherpesvirus genomes. J Gen Virol. 1990 Oct;71(Pt 10):2361–2367. doi: 10.1099/0022-1317-71-10-2361. [DOI] [PubMed] [Google Scholar]
  27. Messerle M., Keil G. M., Koszinowski U. H. Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol. 1991 Mar;65(3):1638–1643. doi: 10.1128/jvi.65.3.1638-1643.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mettenleiter T. C. Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. Virology. 1989 Aug;171(2):623–625. doi: 10.1016/0042-6822(89)90635-1. [DOI] [PubMed] [Google Scholar]
  29. Mettenleiter T. C. Initiation and spread of alpha-herpesvirus infections. Trends Microbiol. 1994 Jan;2(1):2–4. doi: 10.1016/0966-842x(94)90335-2. [DOI] [PubMed] [Google Scholar]
  30. Mettenleiter T. C., Klupp B. G., Weiland F., Visser N. Characterization of a quadruple glycoprotein-deleted pseudorabies virus mutant for use as a biologically safe live virus vaccine. J Gen Virol. 1994 Jul;75(Pt 7):1723–1733. doi: 10.1099/0022-1317-75-7-1723. [DOI] [PubMed] [Google Scholar]
  31. Mettenleiter T. C., Rauh I. A glycoprotein gX-beta-galactosidase fusion gene as insertional marker for rapid identification of pseudorabies virus mutants. J Virol Methods. 1990 Oct;30(1):55–65. doi: 10.1016/0166-0934(90)90043-f. [DOI] [PubMed] [Google Scholar]
  32. Mettenleiter T. C., Spear P. G. Glycoprotein gB (gII) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. J Virol. 1994 Jan;68(1):500–504. doi: 10.1128/jvi.68.1.500-504.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mettenleiter T. C., Zsak L., Zuckermann F., Sugg N., Kern H., Ben-Porat T. Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol. 1990 Jan;64(1):278–286. doi: 10.1128/jvi.64.1.278-286.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meyer A. L., Petrovskis E. A., Duffus W. P., Thomsen D. R., Post L. E. Cloning and sequence of an infectious bovine rhinotracheitis virus (BHV-1) gene homologous to glycoprotein H of herpes simplex virus. Biochim Biophys Acta. 1991 Oct 8;1090(2):267–269. doi: 10.1016/0167-4781(91)90116-4. [DOI] [PubMed] [Google Scholar]
  35. Mittal S. K., Field H. J. Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficient mutants. J Gen Virol. 1989 Apr;70(Pt 4):901–918. doi: 10.1099/0022-1317-70-4-901. [DOI] [PubMed] [Google Scholar]
  36. Nicola A. V., Willis S. H., Naidoo N. N., Eisenberg R. J., Cohen G. H. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. J Virol. 1996 Jun;70(6):3815–3822. doi: 10.1128/jvi.70.6.3815-3822.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parcells M. S., Anderson A. S., Morgan R. W. Characterization of a Marek's disease virus mutant containing a lacZ insertion in the US6 (gD) homologue gene. Virus Genes. 1994 Sep;9(1):5–13. doi: 10.1007/BF01703430. [DOI] [PubMed] [Google Scholar]
  38. Peeters B., Bouma A., de Bruin T., Moormann R., Gielkens A., Kimman T. Non-transmissible pseudorabies virus gp50 mutants: a new generation of safe live vaccines. Vaccine. 1994 Mar;12(4):375–380. doi: 10.1016/0264-410x(94)90104-x. [DOI] [PubMed] [Google Scholar]
  39. Rauh I., Mettenleiter T. C. Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol. 1991 Oct;65(10):5348–5356. doi: 10.1128/jvi.65.10.5348-5356.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rauh I., Weiland F., Fehler F., Keil G. M., Mettenleiter T. C. Pseudorabies virus mutants lacking the essential glycoprotein gII can be complemented by glycoprotein gI of bovine herpesvirus 1. J Virol. 1991 Feb;65(2):621–631. doi: 10.1128/jvi.65.2.621-631.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schmidt J., Klupp B. G., Karger A., Mettenleiter T. C. Adaptability in herpesviruses: glycoprotein D-independent infectivity of pseudorabies virus. J Virol. 1997 Jan;71(1):17–24. doi: 10.1128/jvi.71.1.17-24.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schmitt J., Keil G. M. Identification and characterization of the bovine herpesvirus 1 UL7 gene and gene product which are not essential for virus replication in cell culture. J Virol. 1996 Feb;70(2):1091–1099. doi: 10.1128/jvi.70.2.1091-1099.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Telford E. A., Watson M. S., McBride K., Davison A. J. The DNA sequence of equine herpesvirus-1. Virology. 1992 Jul;189(1):304–316. doi: 10.1016/0042-6822(92)90706-u. [DOI] [PubMed] [Google Scholar]
  44. Vlcek C., Benes V., Lu Z., Kutish G. F., Paces V., Rock D., Letchworth G. J., Schwyzer M. Nucleotide sequence analysis of a 30-kb region of the bovine herpesvirus 1 genome which exhibits a colinear gene arrangement with the UL21 to UL4 genes of herpes simplex virus. Virology. 1995 Jun 20;210(1):100–108. doi: 10.1006/viro.1995.1321. [DOI] [PubMed] [Google Scholar]
  45. Wittels M., Spear P. G. Penetration of cells by herpes simplex virus does not require a low pH-dependent endocytic pathway. Virus Res. 1991 Mar;18(2-3):271–290. doi: 10.1016/0168-1702(91)90024-p. [DOI] [PubMed] [Google Scholar]
  46. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES