Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):34–41. doi: 10.1128/jvi.71.1.34-41.1997

In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms.

D Poncet 1, P Lindenbaum 1, R L'Haridon 1, J Cohen 1
PMCID: PMC191021  PMID: 8985320

Abstract

NSP5 (NS26), the product of rotavirus gene 11, is a phosphoprotein whose role in the virus replication cycle is unknown. To gain further insight into its function, we obtained monoclonal antibodies against the baculovirus-expressed protein. By immunoprecipitation and immunoblotting experiments, we showed that (i) NSP5 appears in many different phosphorylated forms in rotavirus-infected cells; (ii) immunoprecipitated NSP5 from rotavirus-infected cells can be phosphorylated in vitro by incubation with ATP; (iii) NSP5, produced either by transient transfection of rotavirus gene 11 or by infection by gene 11 recombinant vaccinia virus or baculovirus, can be phosphorylated in vivo and in vitro; (iv) NSP5 expressed in Escherichia coli is phosphorylated in vitro, and thus NSP5 is a potential protein kinase; and (v) NSP5 forms dimers and interacts with NSP2. The intracellular localization of NSP5 in the course of rotavirus infection and after transient expression in COS7 cells has also been investigated. In rotavirus-infected cells, NSP5 is localized in viroplasms, but it is widespread throughout the cytoplasm of transfected COS7 cells. NSP5 produced by transfected COS7 cells did not acquire the multiphosphorylated forms observed in rotavirus-infected COS7 cells. Thus, there is a tight correlation between the localization of NSP5 in the viroplasms and its protein kinase activity in vivo or in vitro. Our results suggest that cellular or viral cofactors are indispensable to fully phosphorylate NSP5 and to reach its intracellular localization.

Full Text

The Full Text of this article is available as a PDF (397.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aponte C., Mattion N. M., Estes M. K., Charpilienne A., Cohen J. Expression of two bovine rotavirus non-structural proteins (NSP2, NSP3) in the baculovirus system and production of monoclonal antibodies directed against the expressed proteins. Arch Virol. 1993;133(1-2):85–95. doi: 10.1007/BF01309746. [DOI] [PubMed] [Google Scholar]
  2. Aponte C., Poncet D., Cohen J. Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2. J Virol. 1996 Feb;70(2):985–991. doi: 10.1128/jvi.70.2.985-991.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartel P. L., Fields S. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 1995;254:241–263. doi: 10.1016/0076-6879(95)54018-0. [DOI] [PubMed] [Google Scholar]
  4. Blenis J., Resh M. D. Subcellular localization specified by protein acylation and phosphorylation. Curr Opin Cell Biol. 1993 Dec;5(6):984–989. doi: 10.1016/0955-0674(93)90081-z. [DOI] [PubMed] [Google Scholar]
  5. Chang T. L., Reiss C. S., Huang A. S. Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation. J Virol. 1994 Aug;68(8):4980–4987. doi: 10.1128/jvi.68.8.4980-4987.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cozzone A. J. ATP-dependent protein kinases in bacteria. J Cell Biochem. 1993 Jan;51(1):7–13. doi: 10.1002/jcb.240510103. [DOI] [PubMed] [Google Scholar]
  7. Duclos B., Marcandier S., Cozzone A. J. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10–21. doi: 10.1016/0076-6879(91)01004-l. [DOI] [PubMed] [Google Scholar]
  8. Faux M. C., Scott J. D. Molecular glue: kinase anchoring and scaffold proteins. Cell. 1996 Apr 5;85(1):9–12. doi: 10.1016/s0092-8674(00)81075-2. [DOI] [PubMed] [Google Scholar]
  9. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  10. Gallegos C. O., Patton J. T. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology. 1989 Oct;172(2):616–627. doi: 10.1016/0042-6822(89)90204-3. [DOI] [PubMed] [Google Scholar]
  11. González S. A., Burrone O. R. Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology. 1991 May;182(1):8–16. doi: 10.1016/0042-6822(91)90642-o. [DOI] [PubMed] [Google Scholar]
  12. Haltiwanger R. S., Kelly W. G., Roquemore E. P., Blomberg M. A., Dong L. Y., Kreppel L., Chou T. Y., Hart G. W. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans. 1992 May;20(2):264–269. doi: 10.1042/bst0200264. [DOI] [PubMed] [Google Scholar]
  13. Helmberger-Jones M., Patton J. T. Characterization of subviral particles in cells infected with simian rotavirus SA11. Virology. 1986 Dec;155(2):655–665. doi: 10.1016/0042-6822(86)90225-4. [DOI] [PubMed] [Google Scholar]
  14. Hua J., Chen X., Patton J. T. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. J Virol. 1994 Jun;68(6):3990–4000. doi: 10.1128/jvi.68.6.3990-4000.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hua J., Patton J. T. The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. Virology. 1994 Feb;198(2):567–576. doi: 10.1006/viro.1994.1068. [DOI] [PubMed] [Google Scholar]
  16. Kann M., Lu X., Gerlich W. H. Recent studies on replication of hepatitis B virus. J Hepatol. 1995;22(1 Suppl):9–13. [PubMed] [Google Scholar]
  17. Kapoor M., Zhang L., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem. 1995 Aug 11;270(32):19100–19106. doi: 10.1074/jbc.270.32.19100. [DOI] [PubMed] [Google Scholar]
  18. Kattoura M. D., Chen X., Patton J. T. The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology. 1994 Aug 1;202(2):803–813. doi: 10.1006/viro.1994.1402. [DOI] [PubMed] [Google Scholar]
  19. Kattoura M. D., Clapp L. L., Patton J. T. The rotavirus nonstructural protein, NS35, possesses RNA-binding activity in vitro and in vivo. Virology. 1992 Dec;191(2):698–708. doi: 10.1016/0042-6822(92)90245-k. [DOI] [PubMed] [Google Scholar]
  20. Labbé M., Baudoux P., Charpilienne A., Poncet D., Cohen J. Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol. 1994 Dec;75(Pt 12):3423–3430. doi: 10.1099/0022-1317-75-12-3423. [DOI] [PubMed] [Google Scholar]
  21. Lambden P. R., Cooke S. J., Caul E. O., Clarke I. N. Cloning of noncultivatable human rotavirus by single primer amplification. J Virol. 1992 Mar;66(3):1817–1822. doi: 10.1128/jvi.66.3.1817-1822.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lastarza M. W., Grakoui A., Rice C. M. Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology. 1994 Jul;202(1):224–232. doi: 10.1006/viro.1994.1338. [DOI] [PubMed] [Google Scholar]
  23. Mansell E. A., Ramig R. F., Patton J. T. Temperature-sensitive lesions in the capsid proteins of the rotavirus mutants tsF and tsG that affect virion assembly. Virology. 1994 Oct;204(1):69–81. doi: 10.1006/viro.1994.1511. [DOI] [PubMed] [Google Scholar]
  24. Mattion N. M., Cohen J., Aponte C., Estes M. K. Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology. 1992 Sep;190(1):68–83. doi: 10.1016/0042-6822(92)91193-x. [DOI] [PubMed] [Google Scholar]
  25. Mattion N. M., Mitchell D. B., Both G. W., Estes M. K. Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology. 1991 Mar;181(1):295–304. doi: 10.1016/0042-6822(91)90495-w. [DOI] [PubMed] [Google Scholar]
  26. Meyer J. C., Bergmann C. C., Bellamy A. R. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989 Jul;171(1):98–107. doi: 10.1016/0042-6822(89)90515-1. [DOI] [PubMed] [Google Scholar]
  27. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  28. Offit P. A., Coupar B. E., Svoboda Y. M., Jenkins R. J., McCrae M. A., Abraham A., Hill N. L., Boyle D. B., Andrew M. E., Both G. W. Induction of rotavirus-specific cytotoxic T lymphocytes by vaccinia virus recombinants expressing individual rotavirus genes. Virology. 1994 Jan;198(1):10–16. doi: 10.1006/viro.1994.1002. [DOI] [PubMed] [Google Scholar]
  29. Patton J. T., Gallegos C. O. Structure and protein composition of the rotavirus replicase particle. Virology. 1988 Oct;166(2):358–365. doi: 10.1016/0042-6822(88)90506-5. [DOI] [PubMed] [Google Scholar]
  30. Petrie B. L., Greenberg H. B., Graham D. Y., Estes M. K. Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res. 1984;1(2):133–152. doi: 10.1016/0168-1702(84)90069-8. [DOI] [PubMed] [Google Scholar]
  31. Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol. 1993 Jun;67(6):3159–3165. doi: 10.1128/jvi.67.6.3159-3165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poncet D., Cohen J. A plaque hybridization assay for rotaviruses. J Virol Methods. 1989 Oct;26(1):27–33. doi: 10.1016/0166-0934(89)90071-2. [DOI] [PubMed] [Google Scholar]
  33. Poncet D., Corthier G., Charpilienne A., Cohen J. A recombinant vaccinia virus expressing the major capsid protein of Simian rotavirus-induced anti-rotavirus antibodies. Virus Res. 1990 Mar;15(3):267–274. doi: 10.1016/0168-1702(90)90034-9. [DOI] [PubMed] [Google Scholar]
  34. Poncet D., Laurent S., Cohen J. Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J. 1994 Sep 1;13(17):4165–4173. doi: 10.1002/j.1460-2075.1994.tb06734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roseto A., Scherrer R., Cohen J., Guillemin M. C., Charpilienne A., Feynerol C., Peries J. Isolation and characterization of anti-rotavirus immunoglobulins secreted by cloned hybridoma cell lines. J Gen Virol. 1983 Jan;64(Pt 1):237–240. doi: 10.1099/0022-1317-64-1-237. [DOI] [PubMed] [Google Scholar]
  36. Rossi F., Labourier E., Forné T., Divita G., Derancourt J., Riou J. F., Antoine E., Cathala G., Brunel C., Tazi J. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature. 1996 May 2;381(6577):80–82. doi: 10.1038/381080a0. [DOI] [PubMed] [Google Scholar]
  37. Singer R. H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol. 1992 Feb;4(1):15–19. doi: 10.1016/0955-0674(92)90053-f. [DOI] [PubMed] [Google Scholar]
  38. Smith J. A., Francis S. H., Corbin J. D. Autophosphorylation: a salient feature of protein kinases. Mol Cell Biochem. 1993 Nov;127-128:51–70. doi: 10.1007/BF01076757. [DOI] [PubMed] [Google Scholar]
  39. Stirzaker S. C., Both G. W. The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell. 1989 Mar 10;56(5):741–747. doi: 10.1016/0092-8674(89)90677-6. [DOI] [PubMed] [Google Scholar]
  40. Studier F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol. 1991 May 5;219(1):37–44. doi: 10.1016/0022-2836(91)90855-z. [DOI] [PubMed] [Google Scholar]
  41. Suzuki T., Furukohri T. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J Mol Biol. 1994 Apr 1;237(3):353–357. doi: 10.1006/jmbi.1994.1237. [DOI] [PubMed] [Google Scholar]
  42. Taylor S. S., Knighton D. R., Zheng J., Ten Eyck L. F., Sowadski J. M. Structural framework for the protein kinase family. Annu Rev Cell Biol. 1992;8:429–462. doi: 10.1146/annurev.cb.08.110192.002241. [DOI] [PubMed] [Google Scholar]
  43. Welch S. K., Crawford S. E., Estes M. K. Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol. 1989 Sep;63(9):3974–3982. doi: 10.1128/jvi.63.9.3974-3982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu J. Y., Zhou Z. Y., Judd A., Cartwright C. A., Robinson W. S. The hepatitis B virus-encoded transcriptional trans-activator hbx appears to be a novel protein serine/threonine kinase. Cell. 1990 Nov 16;63(4):687–695. doi: 10.1016/0092-8674(90)90135-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES