Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jul;112(3):946–950. doi: 10.1111/j.1476-5381.1994.tb13172.x

The P2Z-purinoceptor of human lymphocytes: actions of nucleotide agonists and irreversible inhibition by oxidized ATP.

J S Wiley 1, J R Chen 1, M B Snook 1, G P Jamieson 1
PMCID: PMC1910210  PMID: 7921625

Abstract

1. Extracellular adenosine triphosphate (ATP) is known to open a receptor-operated ion channel (P2Z class) in human lymphocytes which conducts a range of cationic permeants. The activity of a range of different agonists and inhibitors towards the P2Z-purinoceptor was investigated by measuring the agonist-induced influx of Ba2+ into fura-2 loaded lymphocytes. 2. The most potent agonist was 2' & 3'-0-(4-benzoylbenzoyl)-ATP (benzoylbenzoic ATP) which gave 2 fold greater maximum Ba2+ influx and had a 10 fold lower EC50 than for ATP. The rank order of agonist potency in K(+)-media was benzoylbenzoic ATP >> ATP = 2-methylthio ATP = 2-chloro ATP > ATP-gamma-S. ADP, UTP and alpha,beta-methylene ATP were unable to stimulate Ba2+ influx. 3. Extracellular Na+ inhibited the increment of Ba2+ influx induced by all concentrations of ATP, 2-methylthio ATP, 2-chloroATP and ATP-gamma-S. This inhibitory effect of extracellular Na+ is also reflected in the different EC50s for benzoylbenzoic ATP (8 microM in K(+)-media, 18 microM in Na(+)-media) but the maximal response to this agonist was the same in the presence or absence of Na+. 4. Treatment of lymphocytes with 2,3 dialdehyde ATP (oxidized ATP0 at 300 microM for 60 min gave total and irreversible inhibition of ATP-induced Ba2+ influx. 5'-p-Fluorosulphonyl benzoyladenosine (FSBA) also was an irreversible inhibitor but the maximal inhibition achieved was 90%.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
946

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke C. W., Wier W. G. Modulation of L-type calcium channels by sodium ions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4417–4421. doi: 10.1073/pnas.89.10.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G. Overview. Purinergic mechanisms. Ann N Y Acad Sci. 1990;603:1–18. doi: 10.1111/j.1749-6632.1990.tb37657.x. [DOI] [PubMed] [Google Scholar]
  4. Dubyak G. R., De Young M. B. Intracellular Ca2+ mobilization activated by extracellular ATP in Ehrlich ascites tumor cells. J Biol Chem. 1985 Sep 5;260(19):10653–10661. [PubMed] [Google Scholar]
  5. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  6. Figures W. R., Niewiarowski S., Morinelli T. A., Colman R. F., Colman R. W. Affinity labeling of a human platelet membrane protein with 5'-p-fluorosulfonylbenzoyl adenosine. Concomitant inhibition of ADP-induced platelet aggregation and fibrinogen receptor exposure. J Biol Chem. 1981 Aug 10;256(15):7789–7795. [PubMed] [Google Scholar]
  7. Filippini A., Taffs R. E., Agui T., Sitkovsky M. V. Ecto-ATPase activity in cytolytic T-lymphocytes. Protection from the cytolytic effects of extracellular ATP. J Biol Chem. 1990 Jan 5;265(1):334–340. [PubMed] [Google Scholar]
  8. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenberg S., Di Virgilio F., Steinberg T. H., Silverstein S. C. Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. J Biol Chem. 1988 Jul 25;263(21):10337–10343. [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Guardabasso V., Munson P. J., Rodbard D. A versatile method for simultaneous analysis of families of curves. FASEB J. 1988 Mar 1;2(3):209–215. doi: 10.1096/fasebj.2.3.3350235. [DOI] [PubMed] [Google Scholar]
  12. Murgia M., Hanau S., Pizzo P., Rippa M., Di Virgilio F. Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem. 1993 Apr 15;268(11):8199–8203. [PubMed] [Google Scholar]
  13. Pizzo P., Zanovello P., Bronte V., Di Virgilio F. Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel. Biochem J. 1991 Feb 15;274(Pt 1):139–144. doi: 10.1042/bj2740139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sariban-Sohraby S., Benos D. J. The amiloride-sensitive sodium channel. Am J Physiol. 1986 Feb;250(2 Pt 1):C175–C190. doi: 10.1152/ajpcell.1986.250.2.C175. [DOI] [PubMed] [Google Scholar]
  15. Schilling W. P., Rajan L., Strobl-Jager E. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem. 1989 Aug 5;264(22):12838–12848. [PubMed] [Google Scholar]
  16. Soltoff S. P., McMillian M. K., Talamo B. R. ATP activates a cation-permeable pathway in rat parotid acinar cells. Am J Physiol. 1992 Apr;262(4 Pt 1):C934–C940. doi: 10.1152/ajpcell.1992.262.4.C934. [DOI] [PubMed] [Google Scholar]
  17. Tatham P. E., Cusack N. J., Gomperts B. D. Characterisation of the ATP4- receptor that mediates permeabilisation of rat mast cells. Eur J Pharmacol. 1988 Feb 16;147(1):13–21. doi: 10.1016/0014-2999(88)90628-0. [DOI] [PubMed] [Google Scholar]
  18. Tatham P. E., Lindau M. ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells. J Gen Physiol. 1990 Mar;95(3):459–476. doi: 10.1085/jgp.95.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiley J. S., Chen R., Jamieson G. P. The ATP4- receptor-operated channel (P2Z class) of human lymphocytes allows Ba2+ and ethidium+ uptake: inhibition of fluxes by suramin. Arch Biochem Biophys. 1993 Aug 15;305(1):54–60. doi: 10.1006/abbi.1993.1392. [DOI] [PubMed] [Google Scholar]
  20. Wiley J. S., Chen R., Wiley M. J., Jamieson G. P. The ATP4- receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Arch Biochem Biophys. 1992 Feb 1;292(2):411–418. doi: 10.1016/0003-9861(92)90010-t. [DOI] [PubMed] [Google Scholar]
  21. Wiley J. S., Dubyak G. R. Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes. Blood. 1989 Apr;73(5):1316–1323. [PubMed] [Google Scholar]
  22. Wiley J. S., Jamieson G. P., Mayger W., Cragoe E. J., Jr, Jopson M. Extracellular ATP stimulates an amiloride-sensitive sodium influx in human lymphocytes. Arch Biochem Biophys. 1990 Aug 1;280(2):263–268. doi: 10.1016/0003-9861(90)90328-v. [DOI] [PubMed] [Google Scholar]
  23. Yamaguchi D. T., Green J., Kleeman C. R., Muallem S. Properties of the depolarization-activated calcium and barium entry in osteoblast-like cells. J Biol Chem. 1989 Jan 5;264(1):197–204. [PubMed] [Google Scholar]
  24. el-Moatassim C., Dubyak G. R. A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem. 1992 Nov 25;267(33):23664–23673. [PubMed] [Google Scholar]
  25. el-Moatassim C., Mani J. C., Dornand J. Extracellular ATP4- permeabilizes thymocytes not only to cations but also to low-molecular-weight solutes. Eur J Pharmacol. 1990 May 31;181(1-2):111–118. doi: 10.1016/0014-2999(90)90251-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES