Abstract
1. This investigation set out to use 23Na n.m.r. spectroscopy to measure changes in intracellular levels of sodium in isolated suspensions of rat proximal tubules. The effects of temperature, an inhibitor of the sodium pump and known natriuretic drugs on intracellular sodium content of such tubular preparations were measured and compared with calcium channel antagonists where action at this level is unclear. 2. Rat kidneys were perfused with collagenase, roughly chopped, subjected to mechanical dispersion and washed to remove all traces of the enzyme. The proximal tubules were then purified and concentrated by Percoll density gradient centrifugation and then resuspended in buffer containing dysprosium tripolyphosphate shift reagent. 3. Distinct peaks corresponding to intracellular and extracellular sodium signals were observed when the tubules were placed into the n.m.r. spectrometer. As the temperature of the suspension rose to 37 degrees C, there was an exponential decrease in sodium content, with a decay constant of 0.15 +/- 0.02 min-1, which reached a stable level within 20 to 25 min. Addition of ouabain, 10(-3) M, resulted in a significant (P < 0.01) 30% increase in intracellular sodium content within 5 min which peaked at 70% 20 min later. Although acetazolamide (10(-3) M) significantly (P < 0.01) increased intracellular sodium content by 45%, amlodipine (10(-4) M) had no effect. 4. These data show that changes in the activity of the Na+/K+/ATPase have a considerable influence on the intracellular levels of sodium in proximal tubule cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balaban R. S., Soltoff S. P., Storey J. M., Mandel L. J. Improved renal cortical tubule suspension: spectrophotometric study of O2 delivery. Am J Physiol. 1980 Jan;238(1):F50–F59. doi: 10.1152/ajprenal.1980.238.1.F50. [DOI] [PubMed] [Google Scholar]
- Baum M. Evidence that parallel Na+-H+ and Cl(-)-HCO3-(OH-) antiporters transport NaCl in the proximal tubule. Am J Physiol. 1987 Feb;252(2 Pt 2):F338–F345. doi: 10.1152/ajprenal.1987.252.2.F338. [DOI] [PubMed] [Google Scholar]
- Beck F., Bauer R., Bauer U., Mason J., Dörge A., Rick R., Thurau K. Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int. 1980 Jun;17(6):756–763. doi: 10.1038/ki.1980.88. [DOI] [PubMed] [Google Scholar]
- Berry C. A. Heterogeneity of tubular transport processes in the nephron. Annu Rev Physiol. 1982;44:181–201. doi: 10.1146/annurev.ph.44.030182.001145. [DOI] [PubMed] [Google Scholar]
- Boulanger Y., Vinay P., Boulanger M. NMR monitoring of intracellular sodium in dog and rabbit kidney-tubules. Am J Physiol. 1987 Nov;253(5 Pt 2):F904–F911. doi: 10.1152/ajprenal.1987.253.5.F904. [DOI] [PubMed] [Google Scholar]
- Boulanger Y., Vinay P., Desroches M. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance. Biophys J. 1985 Apr;47(4):553–561. doi: 10.1016/S0006-3495(85)83950-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burges R. A., Gardiner D. G., Gwilt M., Higgins A. J., Blackburn K. J., Campbell S. F., Cross P. E., Stubbs J. K. Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors. J Cardiovasc Pharmacol. 1987 Jan;9(1):110–119. [PubMed] [Google Scholar]
- DiBona G. F. Renal effects of felodipine: a review of experimental evidence and clinical data. J Cardiovasc Pharmacol. 1990;15 (Suppl 4):S29–S32. [PubMed] [Google Scholar]
- Dobyan D. C., Magill L. S., Friedman P. A., Hebert S. C., Bulger R. E. Carbonic anhydrase histochemistry in rabbit and mouse kidneys. Anat Rec. 1982 Nov;204(3):185–197. doi: 10.1002/ar.1092040303. [DOI] [PubMed] [Google Scholar]
- DuBose T. D., Jr Reclamation of filtered bicarbonate. Kidney Int. 1990 Oct;38(4):584–589. doi: 10.1038/ki.1990.246. [DOI] [PubMed] [Google Scholar]
- Figueiredo J. F., Conti G. T., Falkenstein D., Sigulem D., Ramos O. L. Tetracaine, procaine and verapamil inhibition of fluid absorption in isolated perfused rabbit proximal convoluted tubules. Braz J Med Biol Res. 1982 Oct;15(4-5):259–264. [PubMed] [Google Scholar]
- Gesek F. A., Schoolwerth A. C. Hormonal interactions with the proximal Na(+)-H+ exchanger. Am J Physiol. 1990 Mar;258(3 Pt 2):F514–F521. doi: 10.1152/ajprenal.1990.258.3.F514. [DOI] [PubMed] [Google Scholar]
- Gesek F. A., Wolff D. W., Strandhoy J. W. Improved separation method for rat proximal and distal renal tubules. Am J Physiol. 1987 Aug;253(2 Pt 2):F358–F365. doi: 10.1152/ajprenal.1987.253.2.F358. [DOI] [PubMed] [Google Scholar]
- Grantham J. J., Lowe C. M., Dellasega M., Cole B. R. Effect of hypotonic medium on K and Na content of proximal renal tubules. Am J Physiol. 1977 Jan;232(1):F42–F49. doi: 10.1152/ajprenal.1977.232.1.F42. [DOI] [PubMed] [Google Scholar]
- Gullans S. R., Avison M. J., Ogino T., Giebisch G., Shulman R. G. NMR measurements of intracellular sodium in the rabbit proximal tubule. Am J Physiol. 1985 Jul;249(1 Pt 2):F160–F168. doi: 10.1152/ajprenal.1985.249.1.F160. [DOI] [PubMed] [Google Scholar]
- Johns E. J. A study of the renal actions of amlodipine in the normotensive and spontaneously hypertensive rat. Br J Pharmacol. 1988 Jun;94(2):311–318. doi: 10.1111/j.1476-5381.1988.tb11532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo Y., Frömter E. Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch. 1990 Mar;415(6):726–733. doi: 10.1007/BF02584012. [DOI] [PubMed] [Google Scholar]
- Krapf R. Physiology and molecular biology of the renal Na/H antiporter. Klin Wochenschr. 1989 Sep 1;67(17):847–851. doi: 10.1007/BF01717338. [DOI] [PubMed] [Google Scholar]
- Kumar A. M., Spitzer A., Gupta R. K. 23Na NMR spectroscopy of proximal tubule suspensions. Kidney Int. 1986 Mar;29(3):747–751. doi: 10.1038/ki.1986.61. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lönnerholm G., Ridderstråle Y. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 1980 Feb;17(2):162–174. doi: 10.1038/ki.1980.20. [DOI] [PubMed] [Google Scholar]
- McCarty N. A., O'Neil R. G. Calcium-dependent control of volume regulation in renal proximal tubule cells: II. Roles of dihydropyridine-sensitive and -insensitive Ca2+ entry pathways. J Membr Biol. 1991 Aug;123(2):161–170. doi: 10.1007/BF01998086. [DOI] [PubMed] [Google Scholar]
- Moe O. W., Preisig P. A., Alpern R. J. Cellular model of proximal tubule NaCl and NaHCO3 absorption. Kidney Int. 1990 Oct;38(4):605–611. doi: 10.1038/ki.1990.249. [DOI] [PubMed] [Google Scholar]
- Preisig P. A., Toto R. D., Alpern R. J. Carbonic anhydrase inhibitors. Ren Physiol. 1987;10(3-4):136–159. doi: 10.1159/000173126. [DOI] [PubMed] [Google Scholar]
- Rayson B. M., Gupta R. K. 23Na NMR studies of rat outer medullary kidney tubules. J Biol Chem. 1985 Jun 25;260(12):7276–7280. [PubMed] [Google Scholar]
- Rodicio J. L., Morales J. M., Ruilope L. M. Calcium antagonists and the kidney. Nephrol Dial Transplant. 1990;5(2):81–86. doi: 10.1093/ndt/5.2.81. [DOI] [PubMed] [Google Scholar]
- Sasaki S., Marumo F. Effects of carbonic anhydrase inhibitors on basolateral base transport of rabbit proximal straight tubule. Am J Physiol. 1989 Dec;257(6 Pt 2):F947–F952. doi: 10.1152/ajprenal.1989.257.6.F947. [DOI] [PubMed] [Google Scholar]
- Silbernagl S., Foulkes E. C., Deetjen P. Renal transport of amino acids. Rev Physiol Biochem Pharmacol. 1975;74:105–167. doi: 10.1007/3-540-07483-x_20. [DOI] [PubMed] [Google Scholar]
- Vinay P., Gougoux A., Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol. 1981 Oct;241(4):F403–F411. doi: 10.1152/ajprenal.1981.241.4.F403. [DOI] [PubMed] [Google Scholar]
