Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Aug;112(4):1195–1201. doi: 10.1111/j.1476-5381.1994.tb13210.x

Characterization of the angiotensin II AT1 receptor subtype involved in DNA synthesis in cultured vascular smooth muscle cells.

V Briand 1, L Riva 1, A M Galzin 1
PMCID: PMC1910232  PMID: 7952881

Abstract

1. This study was undertaken in cultured vascular smooth muscle cells to characterize the angiotensin II (AII) AT1 receptor subtype involved in DNA synthesis because (i) the AII receptor involved in vascular proliferation has previously been characterized in vitro in rat aortic cells and identified as an AT1 subtype and (ii) molecular cloning and biochemical studies have provided evidence for the existence of different AT1 receptor subtypes. 2. In cultured rat aortic vascular smooth muscle (VSMC), exposure to AII (0.1 to 100 nM) resulted in a concentration-dependent increase in [3H]-thymidine incorporation with an EC50 of 1.41 +/- 0.51 nM. Maximal stimulation was observed in the presence of 100 nM AII and corresponded to 271 +/- 40% of basal [3H]-thymidine incorporation. 3. To characterize the AII AT1 receptor subtype involved in this effect, cells were exposed to AII (3 nM) in the absence or presence of increasing concentrations of various AII receptor antagonists. The stimulatory effect of AII (3 nM) on [3H]-thymidine incorporation in VSMC was antagonized by the non-selective AT1/AT2 receptor antagonist, [Sar1, Ile8]-AII (IC50 = 5.6 nM), by the AT1A/AT1B receptor antagonist, losartan (IC50 = 10.5 nM) and the AT1 receptor antagonist, L-158809 (IC50 = 0.20 nM). The selective AT2 receptor ligand, CGP 42112A, antagonized AII-induced [3H]-thymidine incorporation with an IC50 of 6.3 +/- 1.3 microM while the AT2/AT1B receptor antagonist, PD 123319, was found to be almost inactive (IC50 > 10 microM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
  2. Blankley C. J., Hodges J. C., Klutchko S. R., Himmelsbach R. J., Chucholowski A., Connolly C. J., Neergaard S. J., Van Nieuwenhze M. S., Sebastian A., Quin J., 3rd Synthesis and structure-activity relationships of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype. J Med Chem. 1991 Nov;34(11):3248–3260. doi: 10.1021/jm00115a014. [DOI] [PubMed] [Google Scholar]
  3. Bobik A., Grinpukel S., Little P. J., Grooms A., Jackman G. Angiotensin II and noradrenaline increase PDGF-BB receptors and potentiate PDGF-BB stimulated DNA synthesis in vascular smooth muscle. Biochem Biophys Res Commun. 1990 Jan 30;166(2):580–588. doi: 10.1016/0006-291x(90)90848-h. [DOI] [PubMed] [Google Scholar]
  4. Bottari S. P., de Gasparo M., Steckelings U. M., Levens N. R. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinol. 1993 Apr;14(2):123–171. doi: 10.1006/frne.1993.1005. [DOI] [PubMed] [Google Scholar]
  5. Bumpus F. M., Catt K. J., Chiu A. T., DeGasparo M., Goodfriend T., Husain A., Peach M. J., Taylor D. G., Jr, Timmermans P. B. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension. 1991 May;17(5):720–721. doi: 10.1161/01.hyp.17.5.720. [DOI] [PubMed] [Google Scholar]
  6. Bunkenburg B., van Amelsvoort T., Rogg H., Wood J. M. Receptor-mediated effects of angiotensin II on growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension. 1992 Dec;20(6):746–754. doi: 10.1161/01.hyp.20.6.746. [DOI] [PubMed] [Google Scholar]
  7. Campbell-Boswell M., Robertson A. L., Jr Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol. 1981 Oct;35(2):265–276. doi: 10.1016/0014-4800(81)90066-6. [DOI] [PubMed] [Google Scholar]
  8. Chamley-Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol Rev. 1979 Jan;59(1):1–61. doi: 10.1152/physrev.1979.59.1.1. [DOI] [PubMed] [Google Scholar]
  9. Chiu A. T., McCall D. E., Price W. A., Wong P. C., Carini D. J., Duncia J. V., Wexler R. R., Yoo S. E., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. VII. Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):711–718. [PubMed] [Google Scholar]
  10. Chiu A. T., Roscoe W. A., McCall D. E., Timmermans P. B. Angiotensin II-1 receptors mediate both vasoconstrictor and hypertrophic responses in rat aortic smooth muscle cells. Receptor. 1991;1(3):133–140. [PubMed] [Google Scholar]
  11. Criscione L., Thomann H., Whitebread S., de Gasparo M., Bühlmayer P., Herold P., Ostermayer F., Kamber B. Binding characteristics and vascular effects of various angiotensin II antagonists. J Cardiovasc Pharmacol. 1990;16 (Suppl 4):S56–S59. doi: 10.1097/00005344-199016004-00012. [DOI] [PubMed] [Google Scholar]
  12. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  13. Dudley D. T., Panek R. L., Major T. C., Lu G. H., Bruns R. F., Klinkefus B. A., Hodges J. C., Weishaar R. E. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol. 1990 Sep;38(3):370–377. [PubMed] [Google Scholar]
  14. Ernsberger P., Zhou J., Damon T. H., Douglas J. G. Angiotensin II receptor subtypes in cultured rat renal mesangial cells. Am J Physiol. 1992 Sep;263(3 Pt 2):F411–F416. doi: 10.1152/ajprenal.1992.263.3.F411. [DOI] [PubMed] [Google Scholar]
  15. Furuta H., Guo D. F., Inagami T. Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem Biophys Res Commun. 1992 Feb 28;183(1):8–13. doi: 10.1016/0006-291x(92)91600-u. [DOI] [PubMed] [Google Scholar]
  16. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  17. Griffin S. A., Brown W. C., MacPherson F., McGrath J. C., Wilson V. G., Korsgaard N., Mulvany M. J., Lever A. F. Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991 May;17(5):626–635. doi: 10.1161/01.hyp.17.5.626. [DOI] [PubMed] [Google Scholar]
  18. Hahn A. W., Jonas U., Buehler F. R., Resink T. J. Identification of a fourth angiotensin AT1 receptor subtype in rat. Biochem Biophys Res Commun. 1993 May 14;192(3):1260–1265. doi: 10.1006/bbrc.1993.1552. [DOI] [PubMed] [Google Scholar]
  19. Herblin W. F., Diamond S. M., Timmermans P. B. Localization of angiotensin II receptor subtypes in the rabbit adrenal and kidney. Peptides. 1991 May-Jun;12(3):581–584. doi: 10.1016/0196-9781(91)90105-x. [DOI] [PubMed] [Google Scholar]
  20. Ikeda U., Ikeda M., Oohara T., Kano S., Yaginuma T. Mitogenic action of interleukin-1 alpha on vascular smooth muscle cells mediated by PDGF. Atherosclerosis. 1990 Oct;84(2-3):183–188. doi: 10.1016/0021-9150(90)90089-2. [DOI] [PubMed] [Google Scholar]
  21. Inagami T., Iwai N., Sasaki K., Yamamo Y., Bardhan S., Chaki S., Guo D. F., Furuta H. Cloning, expression and regulation of angiotensin II receptors. J Hypertens. 1992 Aug;10(8):713–716. [PubMed] [Google Scholar]
  22. Itoh H., Mukoyama M., Pratt R. E., Gibbons G. H., Dzau V. J. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest. 1993 May;91(5):2268–2274. doi: 10.1172/JCI116454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kawahara Y., Sunako M., Tsuda T., Fukuzaki H., Fukumoto Y., Takai Y. Angiotensin II induces expression of the c-fos gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Commun. 1988 Jan 15;150(1):52–59. doi: 10.1016/0006-291x(88)90485-8. [DOI] [PubMed] [Google Scholar]
  24. Kimura I., Naitoh T., Okabe M., Kimura M. Platelet-derived growth factor (PDGF) accelerates induction of competence, and heparin does not inhibit PDGF-induced competence in primary cultured smooth muscle cells of rat aorta. Jpn J Pharmacol. 1992 May;59(1):51–56. doi: 10.1254/jjp.59.51. [DOI] [PubMed] [Google Scholar]
  25. Libby P., O'Brien K. V. Culture of quiescent arterial smooth muscle cells in a defined serum-free medium. J Cell Physiol. 1983 May;115(2):217–223. doi: 10.1002/jcp.1041150217. [DOI] [PubMed] [Google Scholar]
  26. Mantlo N. B., Chakravarty P. K., Ondeyka D. L., Siegl P. K., Chang R. S., Lotti V. J., Faust K. A., Chen T. B., Schorn T. W., Sweet C. S. Potent, orally active imidazo[4,5-b]pyridine-based angiotensin II receptor antagonists. J Med Chem. 1991 Sep;34(9):2919–2922. doi: 10.1021/jm00113a035. [DOI] [PubMed] [Google Scholar]
  27. Mauzy C. A., Hwang O., Egloff A. M., Wu L. H., Chung F. Z. Cloning, expression, and characterization of a gene encoding the human angiotensin II type 1A receptor. Biochem Biophys Res Commun. 1992 Jul 15;186(1):277–284. doi: 10.1016/s0006-291x(05)80804-6. [DOI] [PubMed] [Google Scholar]
  28. Millar J. A., Harris E. L., Cassie N. J. Mitogenesis in cultured vascular smooth muscle cells from two rat models of hypertension in response to fetal calf serum and angiotensin II. J Cardiovasc Pharmacol. 1990;16 (Suppl 7):S14–S16. [PubMed] [Google Scholar]
  29. Murphy T. J., Takeuchi K., Alexander R. W. Molecular cloning of AT1 angiotensin receptors. Am J Hypertens. 1992 Dec;5(12 Pt 2):236S–242S. doi: 10.1093/ajh/5.12.236s. [DOI] [PubMed] [Google Scholar]
  30. Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Owens G. K. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol. 1989 Dec;257(6 Pt 2):H1755–H1765. doi: 10.1152/ajpheart.1989.257.6.H1755. [DOI] [PubMed] [Google Scholar]
  32. Paquet J. L., Baudouin-Legros M., Brunelle G., Meyer P. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens. 1990 Jun;8(6):565–572. doi: 10.1097/00004872-199006000-00010. [DOI] [PubMed] [Google Scholar]
  33. Sasaki K., Yamano Y., Bardhan S., Iwai N., Murray J. J., Hasegawa M., Matsuda Y., Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991 May 16;351(6323):230–233. doi: 10.1038/351230a0. [DOI] [PubMed] [Google Scholar]
  34. Takayanagi R., Ohnaka K., Sakai Y., Nakao R., Yanase T., Haji M., Inagami T., Furuta H., Gou D. F., Nakamuta M. Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. Biochem Biophys Res Commun. 1992 Mar 16;183(2):910–916. doi: 10.1016/0006-291x(92)90570-b. [DOI] [PubMed] [Google Scholar]
  35. Taubman M. B., Berk B. C., Izumo S., Tsuda T., Alexander R. W., Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem. 1989 Jan 5;264(1):526–530. [PubMed] [Google Scholar]
  36. Teutsch B., Bihoreaú C., Monnot C., Bernstein K. E., Murphy T. J., Alexander R. W., Corvol P., Clauser E. A recombinant rat vascular AT1 receptor confers growth properties to angiotensin II in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1381–1388. doi: 10.1016/0006-291x(92)90455-t. [DOI] [PubMed] [Google Scholar]
  37. Timmermans P. B., Wong P. C., Chiu A. T., Herblin W. F. Nonpeptide angiotensin II receptor antagonists. Trends Pharmacol Sci. 1991 Feb;12(2):55–62. doi: 10.1016/0165-6147(91)90498-h. [DOI] [PubMed] [Google Scholar]
  38. Wang D. H., Prewitt R. L. Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension. 1990 Jan;15(1):68–77. doi: 10.1161/01.hyp.15.1.68. [DOI] [PubMed] [Google Scholar]
  39. Whitebread S., Mele M., Kamber B., de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):284–291. doi: 10.1016/0006-291x(89)92133-5. [DOI] [PubMed] [Google Scholar]
  40. Wong P. C., Hart S. D., Zaspel A. M., Chiu A. T., Ardecky R. J., Smith R. D., Timmermans P. B. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther. 1990 Nov;255(2):584–592. [PubMed] [Google Scholar]
  41. Yoshida H., Kakuchi J., Guo D. F., Furuta H., Iwai N., van der Meer-de Jong R., Inagami T., Ichikawa I. Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine and human). Biochem Biophys Res Commun. 1992 Jul 31;186(2):1042–1049. doi: 10.1016/0006-291x(92)90852-c. [DOI] [PubMed] [Google Scholar]
  42. Zhou J., Ernsberger P., Douglas J. G. A novel angiotensin receptor subtype in rat mesangium. Coupling to adenylyl cyclase. Hypertension. 1993 Jun;21(6 Pt 2):1035–1038. doi: 10.1161/01.hyp.21.6.1035. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES