Abstract
1. The site of action at which nitric oxide (NO) may contribute to neurogenic vasodilatation in the hindpaw skin of urethane-anaesthetized rats was examined by the use of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase. 2. Skin blood flow was measured by laser Doppler flowmetry, and neurogenic vasodilatation was evoked either by topical application of mustard oil (5%) or antidromic electrical stimulation of the saphenous nerve (antidromic vasodilatation). 3. L-NAME (60 mumol kg-1, i.v.) attenuated the hyperaemia evoked by mustard oil in an enantiomer-specific manner but failed to reduce antidromic vasodilatation and the vasodilatation due to i.v. injected calcitonin gene-related peptide (CGRP) and substance P (0.1-1 nmol kg-1 each), two proposed mediators of neurogenic vasodilatation. 4. Pretreatment of rats with capsaicin (125 mg kg-1, s.c. 2 weeks beforehand), to defunctionalize afferent neurones, reduced the hyperaemic response to mustard oil and prevented L-NAME from further decreasing the vasodilatation evoked by mustard oil. 5. Intraplantar infusion of sodium nitroprusside (SNP, 0.15 nmol in 1 min), a donor of NO, induced hyperaemia which was significantly diminished by the CGRP antagonist CGRP8-37 (50 nmol kg-1, i.v.) and by capsaicin pretreatment. The ability of CGRP8-37 to inhibit the vasodilator response to SNP was lost in capsaicin-pretreated rats. 6. Taken together, these data indicate that NO does not play a vasorelaxant messenger role in neurogenic vasodilatation but can contribute to activation of, and/or transmitter release from, afferent nerve fibres in response to irritant chemicals.
Full text
PDF![1181](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/69ae511479e7/brjpharm00197-0189.png)
![1182](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/d52343fcbb8c/brjpharm00197-0190.png)
![1183](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/0adcd5daad74/brjpharm00197-0191.png)
![1184](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/69531547e879/brjpharm00197-0192.png)
![1185](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/a50cbb0f8401/brjpharm00197-0193.png)
![1186](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/04372983ca00/brjpharm00197-0194.png)
![1187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2f/1910258/852a3325eb1d/brjpharm00197-0195.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer M. B., Simmons M. L., Murphy S., Gebhart G. F. Bradykinin and capsaicin stimulate cyclic GMP production in cultured rat dorsal root ganglion neurons via a nitrosyl intermediate. J Neurosci Res. 1993 Oct 15;36(3):280–289. doi: 10.1002/jnr.490360306. [DOI] [PubMed] [Google Scholar]
- Delay-Goyet P., Satoh H., Lundberg J. M. Relative involvement of substance P and CGRP mechanisms in antidromic vasodilation in the rat skin. Acta Physiol Scand. 1992 Dec;146(4):537–538. doi: 10.1111/j.1748-1716.1992.tb09460.x. [DOI] [PubMed] [Google Scholar]
- Escott K. J., Brain S. D. Effect of a calcitonin gene-related peptide antagonist (CGRP8-37) on skin vasodilatation and oedema induced by stimulation of the rat saphenous nerve. Br J Pharmacol. 1993 Oct;110(2):772–776. doi: 10.1111/j.1476-5381.1993.tb13878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esplugues J. V., Whittle B. J., Moncada S. Local opioid-sensitive afferent sensory neurones in the modulation of gastric damage induced by Paf. Br J Pharmacol. 1989 Jun;97(2):579–585. doi: 10.1111/j.1476-5381.1989.tb11988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner S. M., Compton A. M., Kemp P. A., Bennett T., Foulkes R., Hughes B. Haemodynamic effects of human alpha-calcitonin gene-related peptide following administration of endothelin-1 or NG-nitro-L-arginine methyl ester in conscious rats. Br J Pharmacol. 1991 May;103(1):1256–1262. doi: 10.1111/j.1476-5381.1991.tb12333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991 Jun;43(2):143–201. [PubMed] [Google Scholar]
- Holzer P., Lippe I. T., Amann R. Participation of capsaicin-sensitive afferent neurons in gastric motor inhibition caused by laparotomy and intraperitoneal acid. Neuroscience. 1992;48(3):715–722. doi: 10.1016/0306-4522(92)90414-w. [DOI] [PubMed] [Google Scholar]
- Holzer P., Lippe I. T., Jocic M., Wachter C., Erb R., Heinemann A. Nitric oxide-dependent and -independent hyperaemia due to calcitonin gene-related peptide in the rat stomach. Br J Pharmacol. 1993 Sep;110(1):404–410. doi: 10.1111/j.1476-5381.1993.tb13824.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol. 1992;121:49–146. doi: 10.1007/BFb0033194. [DOI] [PubMed] [Google Scholar]
- Hughes S. R., Brain S. D. A calcitonin gene-related peptide (CGRP) antagonist (CGRP8-37) inhibits microvascular responses induced by CGRP and capsaicin in skin. Br J Pharmacol. 1991 Nov;104(3):738–742. doi: 10.1111/j.1476-5381.1991.tb12497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. R., Brain S. D. Nitric oxide-dependent release of vasodilator quantities of calcitonin gene-related peptide from capsaicin-sensitive nerves in rabbit skin. Br J Pharmacol. 1994 Feb;111(2):425–430. doi: 10.1111/j.1476-5381.1994.tb14752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. R., Williams T. J., Brain S. D. Evidence that endogenous nitric oxide modulates oedema formation induced by substance P. Eur J Pharmacol. 1990 Dec 4;191(3):481–484. doi: 10.1016/0014-2999(90)94184-y. [DOI] [PubMed] [Google Scholar]
- Jancsó G., Kiraly E., Jancsó-Gábor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature. 1977 Dec 22;270(5639):741–743. doi: 10.1038/270741a0. [DOI] [PubMed] [Google Scholar]
- Kerezoudis N. P., Olgart L., Edwall L. Differential effects of nitric oxide synthesis inhibition on basal blood flow and antidromic vasodilation in rat oral tissues. Eur J Pharmacol. 1993 Sep 14;241(2-3):209–219. doi: 10.1016/0014-2999(93)90205-v. [DOI] [PubMed] [Google Scholar]
- Khalil Z., Helme R. D. The quantitative contribution of nitric oxide and sensory nerves to bradykinin-induced inflammation in rat skin microvasculature. Brain Res. 1992 Aug 28;589(1):102–108. doi: 10.1016/0006-8993(92)91167-d. [DOI] [PubMed] [Google Scholar]
- Lawrence E., Brain S. D. Responses to endothelins in the rat cutaneous microvasculature: a modulatory role of locally-produced nitric oxide. Br J Pharmacol. 1992 Jul;106(3):733–738. doi: 10.1111/j.1476-5381.1992.tb14402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lembeck F., Holzer P. Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(2):175–183. doi: 10.1007/BF00500282. [DOI] [PubMed] [Google Scholar]
- Lippe I. T., Stabentheiner A., Holzer P. Participation of nitric oxide in the mustard oil-induced neurogenic inflammation of the rat paw skin. Eur J Pharmacol. 1993 Feb 23;232(1):113–120. doi: 10.1016/0014-2999(93)90735-z. [DOI] [PubMed] [Google Scholar]
- Louis S. M., Jamieson A., Russell N. J., Dockray G. J. The role of substance P and calcitonin gene-related peptide in neurogenic plasma extravasation and vasodilatation in the rat. Neuroscience. 1989;32(3):581–586. doi: 10.1016/0306-4522(89)90281-9. [DOI] [PubMed] [Google Scholar]
- Lynn B., Shakhanbeh J. Substance P content of the skin, neurogenic inflammation and numbers of C-fibres following capsaicin application to a cutaneous nerve in the rabbit. Neuroscience. 1988 Mar;24(3):769–775. doi: 10.1016/0306-4522(88)90065-6. [DOI] [PubMed] [Google Scholar]
- Maggi C. A., Patacchini R., Rovero P., Giachetti A. Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol. 1993 Feb;13(1):23–93. doi: 10.1111/j.1474-8673.1993.tb00396.x. [DOI] [PubMed] [Google Scholar]
- Morris R., Southam E., Braid D. J., Garthwaite J. Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci Lett. 1992 Mar 16;137(1):29–32. doi: 10.1016/0304-3940(92)90290-n. [DOI] [PubMed] [Google Scholar]
- Moussaoui S. M., Montier F., Carruette A., Blanchard J. C., Laduron P. M., Garret C. A non-peptide NK1-receptor antagonist, RP 67580, inhibits neurogenic inflammation postsynaptically. Br J Pharmacol. 1993 May;109(1):259–264. doi: 10.1111/j.1476-5381.1993.tb13562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralevic V., Khalil Z., Dusting G. J., Helme R. D. Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature. Br J Pharmacol. 1992 Jul;106(3):650–655. doi: 10.1111/j.1476-5381.1992.tb14390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santicioli P., Giuliani S., Maggi C. A. Failure of L-nitroarginine, a nitric oxide synthase inhibitor, to affect hypotension and plasma protein extravasation produced by tachykinin NK-1 receptor activation in rats. J Auton Pharmacol. 1993 Jun;13(3):193–199. doi: 10.1111/j.1474-8673.1993.tb00266.x. [DOI] [PubMed] [Google Scholar]
- Verge V. M., Xu Z., Xu X. J., Wiesenfeld-Hallin Z., Hökfelt T. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11617–11621. doi: 10.1073/pnas.89.23.11617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vizzard M. A., Erdman S. L., Erickson V. L., Stewart R. J., Roppolo J. R., De Groat W. C. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat. J Comp Neurol. 1994 Jan 1;339(1):62–75. doi: 10.1002/cne.903390107. [DOI] [PubMed] [Google Scholar]
- Wei E. P., Moskowitz M. A., Boccalini P., Kontos H. A. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res. 1992 Jun;70(6):1313–1319. doi: 10.1161/01.res.70.6.1313. [DOI] [PubMed] [Google Scholar]
- Whittle B. J., Lopez-Belmonte J., Rees D. D. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol. 1989 Oct;98(2):646–652. doi: 10.1111/j.1476-5381.1989.tb12639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]