Abstract
1. The effects of noradrenaline, ATP, adenylyl-imidodiphosphate (AMP-PNP), adenosine, alpha,beta-methylene-ATP and the P2-purinoceptor antagonist, suramin on N'-acetyl-5-hydroxytryptamine production were studied in cultured denervated rat pineal glands. 2. Noradrenaline (3 nM-1 microM) increased N'-acetyl-5-hydroxytryptamine production as measured both in the gland and the culture medium. 3. In noradrenaline (10 nM)-stimulated pineal glands, ATP (0.03 nM-1 mM) or AMP-PNP (0.1 microM-1 mM) increased N'-acetyl-5-hydroxytryptamine production in a concentration-dependent manner. 4. Alpha,beta-Methylene-ATP at the concentration of 0.1 mM, but not 3 microM, attenuated the enhancement by ATP (0.1 mM) of noradrenaline (10 nM)-induced N'-acetyl-5-hydroxytryptamine production. 5. Suramin (0.1 mM) blocked the potentiating effect of ATP (0.1 mM), but not the potentiating effect of adenosine (0.1 mM) in glands incubated with noradrenaline (10 nM). 6. These findings suggest that the rat pineal gland possesses P2-purinoceptors which when stimulated potentiate the effect of noradrenaline but do not, by themselves, induce an increase in N'-acetyl-5-hydroxytryptamine production.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976 Aug;1(4):239–248. doi: 10.1016/0306-4522(76)90054-3. [DOI] [PubMed] [Google Scholar]
- Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Overview. Purinergic mechanisms. Ann N Y Acad Sci. 1990;603:1–18. doi: 10.1111/j.1749-6632.1990.tb37657.x. [DOI] [PubMed] [Google Scholar]
- Charest R., Blackmore P. F., Exton J. H. Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem. 1985 Dec 15;260(29):15789–15794. [PubMed] [Google Scholar]
- Dunn P. M., Blakeley A. G. Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol. 1988 Feb;93(2):243–245. doi: 10.1111/j.1476-5381.1988.tb11427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- French A. M., Scott N. C. A comparison of the effects of nifedipine and verapamil on rat vas deferens. Br J Pharmacol. 1981 Jun;73(2):321–323. doi: 10.1111/j.1476-5381.1981.tb10424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gharib A., Delton I., Lagarde M., Sarda N. Evidence for adenosine A2b receptors in the rat pineal gland. Eur J Pharmacol. 1992 Apr 10;225(4):359–360. doi: 10.1016/0922-4106(92)90113-a. [DOI] [PubMed] [Google Scholar]
- Gharib A., Reynaud D., Sarda N., Vivien-Roels B., Pévet P., Pacheco H. Adenosine analogs elevate N-acetylserotonin and melatonin in rat pineal gland. Neurosci Lett. 1989 Dec 4;106(3):345–349. doi: 10.1016/0304-3940(89)90188-2. [DOI] [PubMed] [Google Scholar]
- Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
- Klein D. C., Sugden D., Weller J. L. Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):599–603. doi: 10.1073/pnas.80.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein D., Weller J. L. Adrenergic-adenosine 3',5'-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland. J Pharmacol Exp Ther. 1973 Sep;186(3):516–527. [PubMed] [Google Scholar]
- Mefford I. N., Barchas J. D. Determination of tryptophan and metabolites in rat brain and pineal tissue by reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1980 Feb 8;181(2):187–193. doi: 10.1016/s0378-4347(00)81604-7. [DOI] [PubMed] [Google Scholar]
- Nikodijevic O., Klein D. C. Adenosine stimulates adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate accumulation in rat pinealocytes: evidence for a role for adenosine in pineal neurotransmission. Endocrinology. 1989 Oct;125(4):2150–2157. doi: 10.1210/endo-125-4-2150. [DOI] [PubMed] [Google Scholar]
- Nonaka K. O., Reiter R. J., Withyachumnarnkul B., Stokkan K. A., Lerchl A. Adenosine effects on the rat pineal gland in vitro: cyclic adenosine monophosphate levels, N-acetyltransferase, and thyroxine type II 5'-deiodinase activities and melatonin production. J Pineal Res. 1991 Aug;11(1):1–6. doi: 10.1111/j.1600-079x.1991.tb00819.x. [DOI] [PubMed] [Google Scholar]
- Parfitt A., Weller J. L., Klein D. C. Beta adrenergic-blockers decrease adrenergically stimulated N-acetyltransferase activity in pineal glands in organ culture. Neuropharmacology. 1976 Jun;15(6):353–358. doi: 10.1016/0028-3908(76)90083-6. [DOI] [PubMed] [Google Scholar]
- Pirotton S., Erneux C., Boeynaems J. M. Dual role of GTP-binding proteins in the control of endothelial prostacyclin. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1113–1120. doi: 10.1016/s0006-291x(87)80185-7. [DOI] [PubMed] [Google Scholar]
- Sarda N., Gharib A., Reynaud D., Ou L., Pacheco H. Identification of adenosine receptor in rat pineal gland: evidence for A-2 selectivity. J Neurochem. 1989 Sep;53(3):733–737. doi: 10.1111/j.1471-4159.1989.tb11766.x. [DOI] [PubMed] [Google Scholar]
- Sasakawa N., Nakaki T., Yamamoto S., Kato R. Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. J Neurochem. 1989 Feb;52(2):441–447. doi: 10.1111/j.1471-4159.1989.tb09140.x. [DOI] [PubMed] [Google Scholar]
- Schneider P., Hopp H. H., Isenberg G. Ca2+ influx through ATP-gated channels increments [Ca2+]i and inactivates ICa in myocytes from guinea-pig urinary bladder. J Physiol. 1991;440:479–496. doi: 10.1113/jphysiol.1991.sp018720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugden A. L., Sugden D., Klein D. C. Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes. J Biol Chem. 1986 Sep 5;261(25):11608–11612. [PubMed] [Google Scholar]
- Sugden D. Melatonin biosynthesis in the mammalian pineal gland. Experientia. 1989 Oct 15;45(10):922–932. doi: 10.1007/BF01953049. [DOI] [PubMed] [Google Scholar]
- Sugden L. A., Sugden D., Klein D. C. Alpha 1-adrenoceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx. J Biol Chem. 1987 Jan 15;262(2):741–745. [PubMed] [Google Scholar]
- Thomas S. A., Hume R. I. Permeation of both cations and anions through a single class of ATP-activated ion channels in developing chick skeletal muscle. J Gen Physiol. 1990 Apr;95(4):569–590. doi: 10.1085/jgp.95.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacas M. I., Sarmiento M. I., Pereyra E. N., Cardinali D. P. Effect of adenosine on melatonin and norepinephrine release in rat pineal explants. Acta Physiol Pharmacol Latinoam. 1989;39(2):189–195. [PubMed] [Google Scholar]
- Yatani A., Tsuda Y., Akaike N., Brown A. M. Nanomolar concentrations of extracellular ATP activate membrane Ca channels in snail neurones. Nature. 1982 Mar 11;296(5853):169–171. doi: 10.1038/296169a0. [DOI] [PubMed] [Google Scholar]
- Yount R. G., Ojala D., Babcock D. Interaction of P--N--P and P--C--P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry. 1971 Jun 22;10(13):2490–2496. doi: 10.1021/bi00789a010. [DOI] [PubMed] [Google Scholar]
- van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]
- von Kügelgen I., Starke K. Evidence for two separate vasoconstriction-mediating nucleotide receptors, both distinct from the P2x-receptor, in rabbit basilar artery: a receptor for pyrimidine nucleotides and a receptor for purine nucleotides. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jun;341(6):538–546. doi: 10.1007/BF00171734. [DOI] [PubMed] [Google Scholar]