Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 May;112(1):323–331. doi: 10.1111/j.1476-5381.1994.tb13072.x

Further characterization of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle.

G S Baxter 1, O E Murphy 1, T P Blackburn 1
PMCID: PMC1910288  PMID: 8032658

Abstract

1. The present study was undertaken to isolate and characterize pharmacologically homogeneous populations of 5-hydroxytryptamine (5-HT) receptors from a possible mixed receptor population mediating concentration of the longitudinal muscle of rat stomach fundus. Our aim was to extend the pharmacological characterization of the 5-HT2B receptor which is reported to be expressed in this preparation. 2. To minimize spontaneous activity and any influence of circular muscle on the contractile response, narrow (1-1.5 x 20 mm) segments of mucosa-denuded longitudinal muscle were used. Under these conditions, blockade of monoamine oxidase with pargyline (100 microM for 15 min) caused a leftward displacement of concentration-effect curves for both 5-methoxytryptamine (5-MeO-T) and tryptamine. Neither pargyline nor a number of uptake inhibitors affected responses to 5-HT. 3. In pargyline pretreated preparations, the order of potency of a number of tryptamine analogues was as follows: 5-MeO-T > or = alpha-Me-5-HT > or = 5-HT > 5-carboxamidotryptamine (5-CT) > tryptamine > 2-Me-5-HT. In addition several ligands known to act as agonists at either 5-HT2A or 5-HT2C receptors including 1-m-chlorophenylpiperazine (m-CPP), Ru 24969, MK 212 and SCH 23390 were also agonists in rat fundus whilst sumatriptan, renzapride and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) were very weak or inactive. With the exception of 2-Me-5-HT and m-CPP, most agonists produced monophasic concentration-effect curves consistent with an interaction at a single site.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARLOW R. B., KHAN I. Actions of some analogues of 5-hydroxytryptamine on the isolated rat uterus and the rat fundus strip preparations. Br J Pharmacol Chemother. 1959 Jun;14(2):265–272. doi: 10.1111/j.1476-5381.1959.tb01397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baxter G. S., Craig D. A., Clarke D. E. 5-Hydroxytryptamine4 receptors mediate relaxation of the rat oesophageal tunica muscularis mucosae. Naunyn Schmiedebergs Arch Pharmacol. 1991 May;343(5):439–446. doi: 10.1007/BF00169544. [DOI] [PubMed] [Google Scholar]
  4. Bishop L. A., Gerskowitch V. P., Hull R. A., Shankley N. P., Black J. W. Combined dose-ratio analysis of cholecystokinin receptor antagonists, devazepide, lorglumide and loxiglumide in the guinea-pig gall bladder. Br J Pharmacol. 1992 May;106(1):61–66. doi: 10.1111/j.1476-5381.1992.tb14293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackburn T. P., Thornber C. W., Pearce R. J., Cox B. In vitro studies with ICI 169,369, a chemically novel 5-HT antagonist. Eur J Pharmacol. 1988 Jun 10;150(3):247–256. doi: 10.1016/0014-2999(88)90005-2. [DOI] [PubMed] [Google Scholar]
  6. Bodelsson M., Törnebrandt K., Arneklo-Nobin B. Endothelial relaxing 5-hydroxytryptamine receptors in the rat jugular vein: similarity with the 5-hydroxytryptamine1C receptor. J Pharmacol Exp Ther. 1993 Feb;264(2):709–716. [PubMed] [Google Scholar]
  7. Branchek T. A., Mawe G. M., Gershon M. D. Characterization and localization of a peripheral neural 5-hydroxytryptamine receptor subtype (5-HT1P) with a selective agonist, 3H-5-hydroxyindalpine. J Neurosci. 1988 Jul;8(7):2582–2595. doi: 10.1523/JNEUROSCI.08-07-02582.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clineschmidt B. V., Reiss D. R., Pettibone D. J., Robinson J. L. Characterization of 5-hydroxytryptamine receptors in rat stomach fundus. J Pharmacol Exp Ther. 1985 Dec;235(3):696–708. [PubMed] [Google Scholar]
  9. Cohen M. L., Colbert W. E. Relationship between receptors mediating serotonin (5-HT) contractions in the canine basilar artery to 5-HT1, 5-HT2 and rat stomach fundus 5-HT receptors. J Pharmacol Exp Ther. 1986 Jun;237(3):713–718. [PubMed] [Google Scholar]
  10. Cohen M. L., Fludzinski L. A. Contractile serotonergic receptor in rat stomach fundus. J Pharmacol Exp Ther. 1987 Oct;243(1):264–269. [PubMed] [Google Scholar]
  11. Cohen M. L., Wittenauer L. A. Relationship between serotonin and tryptamine receptors in the rat stomach fundus. J Pharmacol Exp Ther. 1985 Apr;233(1):75–79. [PubMed] [Google Scholar]
  12. Conn P. J., Sanders-Bush E. Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked serotonergic (5-HT-2 and 5-HT-1c) receptors. J Pharmacol Exp Ther. 1987 Aug;242(2):552–557. [PubMed] [Google Scholar]
  13. Foguet M., Hoyer D., Pardo L. A., Parekh A., Kluxen F. W., Kalkman H. O., Stühmer W., Lübbert H. Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J. 1992 Sep;11(9):3481–3487. doi: 10.1002/j.1460-2075.1992.tb05427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foguet M., Nguyen H., Le H., Lübbert H. Structure of the mouse 5-HT1C, 5-HT2 and stomach fundus serotonin receptor genes. Neuroreport. 1992 Apr;3(4):345–348. doi: 10.1097/00001756-199204000-00014. [DOI] [PubMed] [Google Scholar]
  15. Forbes I. T., Kennett G. A., Gadre A., Ham P., Hayward C. J., Martin R. T., Thompson M., Wood M. D., Baxter G. S., Glen A. N-(1-methyl-5-indolyl)-N'-(3-pyridyl)urea hydrochloride: the first selective 5-HT1C receptor antagonist. J Med Chem. 1993 Apr 16;36(8):1104–1107. doi: 10.1021/jm00060a019. [DOI] [PubMed] [Google Scholar]
  16. Hartig P. R., Branchek T. A., Weinshank R. L. A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci. 1992 Apr;13(4):152–159. doi: 10.1016/0165-6147(92)90053-9. [DOI] [PubMed] [Google Scholar]
  17. Hoyer D., Waeber C., Schoeffter P., Palacios J. M., Dravid A. 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. A pharmacological characterization. Naunyn Schmiedebergs Arch Pharmacol. 1989 Mar;339(3):252–258. doi: 10.1007/BF00173573. [DOI] [PubMed] [Google Scholar]
  18. Humphrey P. P., Hartig P., Hoyer D. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci. 1993 Jun;14(6):233–236. doi: 10.1016/0165-6147(93)90016-d. [DOI] [PubMed] [Google Scholar]
  19. Kelly J., Macdonald A. Relaxant effects of alpha-adrenoceptor agonists in the rat isolated gastric fundus. J Pharm Pharmacol. 1990 Jan;42(1):30–34. doi: 10.1111/j.2042-7158.1990.tb05344.x. [DOI] [PubMed] [Google Scholar]
  20. Kursar J. D., Nelson D. L., Wainscott D. B., Cohen M. L., Baez M. Molecular cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2F) from rat stomach fundus. Mol Pharmacol. 1992 Oct;42(4):549–557. [PubMed] [Google Scholar]
  21. Lattimer N., McAdams R. P., Rhodes K. F., Sharma S., Turner S. J., Waterfall J. F. Alpha 2-adrenoceptor antagonism and other pharmacological antagonist properties of some substituted benzoquinolizines and yohimbine in vitro. Naunyn Schmiedebergs Arch Pharmacol. 1984 Oct;327(4):312–318. doi: 10.1007/BF00506242. [DOI] [PubMed] [Google Scholar]
  22. Leff P., Martin G. R. The classification of 5-hydroxytryptamine receptors. Med Res Rev. 1988 Apr-Jun;8(2):187–202. doi: 10.1002/med.2610080203. [DOI] [PubMed] [Google Scholar]
  23. Loric S., Launay J. M., Colas J. F., Maroteaux L. New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett. 1992 Nov 9;312(2-3):203–207. doi: 10.1016/0014-5793(92)80936-b. [DOI] [PubMed] [Google Scholar]
  24. Mawe G. M., Branchek T. A., Gershon M. D. Blockade of 5-HT-mediated enteric slow EPSPs by BRL 24924: gastrokinetic effects. Am J Physiol. 1989 Sep;257(3 Pt 1):G386–G396. doi: 10.1152/ajpgi.1989.257.3.G386. [DOI] [PubMed] [Google Scholar]
  25. Offermeier J., Ariëns E. J. Serotonin. I. receptors involved in its action. Arch Int Pharmacodyn Ther. 1966 Nov;164(1):192–215. [PubMed] [Google Scholar]
  26. Takaki M., Branchek T., Tamir H., Gershon M. D. Specific antagonism of enteric neural serotonin receptors by dipeptides of 5-hydroxytryptophan: evidence that serotonin is a mediator of slow synaptic excitation in the myenteric plexus. J Neurosci. 1985 Jul;5(7):1769–1780. doi: 10.1523/JNEUROSCI.05-07-01769.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. VANE J. R. The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation. Br J Pharmacol Chemother. 1959 Mar;14(1):87–98. doi: 10.1111/j.1476-5381.1959.tb00933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Waikar M. V., Hegde S. S., Ford A. P., Clarke D. E. Pharmacological analyses of endo-6-methoxy-8-methyl-8-azabicyclo[3.2.1]oct-3-yl-2,3-dihydro-2-oxo-1 H- benzimidazole-1-carboxylate hydrochloride (DAU 6285) at the 5-hydroxytryptamine4 receptor in the tunica muscularis mucosae of rat esophagus and ileum of guinea pig: role of endogenous 5-hydroxytryptamine. J Pharmacol Exp Ther. 1993 Feb;264(2):654–661. [PubMed] [Google Scholar]
  29. Wainscott D. B., Cohen M. L., Schenck K. W., Audia J. E., Nissen J. S., Baez M., Kursar J. D., Lucaites V. L., Nelson D. L. Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol Pharmacol. 1993 Mar;43(3):419–426. [PubMed] [Google Scholar]
  30. Winter J. C., Gessner P. K. Phenoxybenzamine antagonism of tryptamines, their indene isosteres and 5-hydroxytryptamine in the rat stomach fundus preparation. J Pharmacol Exp Ther. 1968 Aug;162(2):286–293. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES