Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 May;112(1):19–22. doi: 10.1111/j.1476-5381.1994.tb13022.x

Tacrine-induced increase in the release of spontaneous high quantal content events in Torpedo electric organ.

C Cantí 1, E Martí 1, J Marsal 1, C Solsona 1
PMCID: PMC1910293  PMID: 8032641

Abstract

1. The anticholinesterases, tacrine (100 microM) and physostigmine (60 microM) had different effects on the amplitude distribution and kinetics of miniature endplate currents (m.e.p.cs) recorded extracellularly from the electric organ of Torpedo marmorata. 2. Tacrine increased the ratio of giant miniatures (larger than 4 mV of amplitude) to more than 20% of recorded spontaneous events. In the presence of physostigmine such events represented only 4%. 3. Both tacrine and physostigmine increased the rise time and the decay phase of normal-sized m.e.p.cs when compared to control conditions. Both effects were significantly greater for tacrine. 4. We have tested the specificity of the tacrine effect on ectoenzyme activities associated with plasma membranes of these pure cholinergic nerve endings. Tacrine does not act unspecifically on every ectoenzyme, because it is not able to block the ectoapyrase activity even at a concentration 100 fold greater than that required to inhibit 94% of AChE. 5. We conclude that the differential effects of tacrine and physostigmine can be explained in terms of undetermined presynaptic actions of tacrine, while comparable effects of the two compounds can be explained through a shared anticholinesterase activity.

Full text

PDF
19

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford M. L., Wann K. T. Extracellular chloride replacement by isethionate induces abnormal spontaneous release of transmitter at the frog neuromuscular junction. Br J Pharmacol. 1983 May;79(1):201–209. doi: 10.1111/j.1476-5381.1983.tb10513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Drukarch B., Kits K. S., Van der Meer E. G., Lodder J. C., Stoof J. C. 9-Amino-1,2,3,4-tetrahydroacridine (THA), an alleged drug for the treatment of Alzheimer's disease, inhibits acetylcholinesterase activity and slow outward K+ current. Eur J Pharmacol. 1987 Sep 2;141(1):153–157. doi: 10.1016/0014-2999(87)90424-9. [DOI] [PubMed] [Google Scholar]
  3. Dunant Y., Esquerda J. E., Loctin F., Marsal J., Muller D. Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ. J Physiol. 1987 Apr;385:677–692. doi: 10.1113/jphysiol.1987.sp016514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  5. Fiekers J. F. Interactions of edrophonium, physostigmine and methanesulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex. J Pharmacol Exp Ther. 1985 Sep;234(3):539–549. [PubMed] [Google Scholar]
  6. Freeman S. E., Dawson R. M. Tacrine: a pharmacological review. Prog Neurobiol. 1991;36(4):257–277. doi: 10.1016/0301-0082(91)90002-i. [DOI] [PubMed] [Google Scholar]
  7. Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kordas M. On the role of junctional cholinesterase in determining the time course of the end-plate current. J Physiol. 1977 Aug;270(1):133–150. doi: 10.1113/jphysiol.1977.sp011942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kumar V., Becker R. E. Clinical pharmacology of tetrahydroaminoacridine: a possible therapeutic agent Alzheimer's disease. Int J Clin Pharmacol Ther Toxicol. 1989 Oct;27(10):478–485. [PubMed] [Google Scholar]
  10. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  11. Magleby K. L., Stevens C. F. The effect of voltage on the time course of end-plate currents. J Physiol. 1972 May;223(1):151–171. doi: 10.1113/jphysiol.1972.sp009839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Molgó J., Thesleff S. 4-aminoquinoline-induced 'giant' miniature endplate potentials at mammalian neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1982 Jan 22;214(1195):229–244. doi: 10.1098/rspb.1982.0006. [DOI] [PubMed] [Google Scholar]
  13. Morel N., Israel M., Manaranche R., Mastour-Frachon P. Isolation of pure cholinergic nerve endings from Torpedo electric organ. Evaluation of their metabolic properties. J Cell Biol. 1977 Oct;75(1):43–55. doi: 10.1083/jcb.75.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muller D., Dunant Y. Spontaneous quantal and subquantal transmitter release at the Torpedo nerve-electroplaque junction. Neuroscience. 1987 Mar;20(3):911–921. doi: 10.1016/0306-4522(87)90252-1. [DOI] [PubMed] [Google Scholar]
  15. Sarkis J. J., Salto C. Characterization of a synaptosomal ATP diphosphohydrolase from the electric organ of Torpedo marmorata. Brain Res Bull. 1991 Jun;26(6):871–876. doi: 10.1016/0361-9230(91)90251-e. [DOI] [PubMed] [Google Scholar]
  16. Sellin L. C., Thesleff S. Pre- and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol. 1981 Aug;317:487–495. doi: 10.1113/jphysiol.1981.sp013838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shutske G. M., Pierrat F. A., Kapples K. J., Cornfeldt M. L., Szewczak M. R., Huger F. P., Bores G. M., Haroutunian V., Davis K. L. 9-Amino-1,2,3,4-tetrahydroacridin-1-ols: synthesis and evaluation as potential Alzheimer's disease therapeutics. J Med Chem. 1989 Aug;32(8):1805–1813. doi: 10.1021/jm00128a024. [DOI] [PubMed] [Google Scholar]
  18. Soria B. Properties of miniature post-synaptic currents at the Torpedo marmorata nerve-electroplate junction. Q J Exp Physiol. 1983 Apr;68(2):189–202. doi: 10.1113/expphysiol.1983.sp002711. [DOI] [PubMed] [Google Scholar]
  19. Stevens C. F. Quantal release of neurotransmitter and long-term potentiation. Cell. 1993 Jan;72 (Suppl):55–63. doi: 10.1016/s0092-8674(05)80028-5. [DOI] [PubMed] [Google Scholar]
  20. Thesleff S., Sellin L. C., Tågerud S. Tetrahydroaminoacridine (tacrine) stimulates neurosecretion at mammalian motor endplates. Br J Pharmacol. 1990 Jul;100(3):487–490. doi: 10.1111/j.1476-5381.1990.tb15834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van der Kloot W. The regulation of quantal size. Prog Neurobiol. 1991;36(2):93–130. doi: 10.1016/0301-0082(91)90019-w. [DOI] [PubMed] [Google Scholar]
  22. Whittaker V. P. Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals. Brain Res. 1990 Mar 12;511(1):113–121. doi: 10.1016/0006-8993(90)90230-9. [DOI] [PubMed] [Google Scholar]
  23. Wu C. S., Yang J. T. Tacrine protection of acetylcholinesterase from inactivation by diisopropylfluorophosphate: a circular dichroism study. Mol Pharmacol. 1989 Jan;35(1):85–92. [PubMed] [Google Scholar]
  24. Yamamoto D., Yeh J. Z. Kinetics of 9-aminoacridine block of single Na channels. J Gen Physiol. 1984 Sep;84(3):361–377. doi: 10.1085/jgp.84.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yeh J. Z., Oxford G. S., Wu C. H., Narahashi T. Interactions of aminopyridines with potassium channels of squid axon membranes. Biophys J. 1976 Jan;16(1):77–81. doi: 10.1016/S0006-3495(76)85663-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES