Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 May;112(1):43–48. doi: 10.1111/j.1476-5381.1994.tb13026.x

Metabolism of methylarginines by human vasculature; implications for the regulation of nitric oxide synthesis.

R J MacAllister 1, S A Fickling 1, G S Whitley 1, P Vallance 1
PMCID: PMC1910311  PMID: 7518309

Abstract

1. The metabolism of methylarginines by human cultured endothelial cells and human saphenous vein was studied in vitro. The human endothelial cell line (SGHEC-7), primary cultures of human umbilical vein endothelial cells (HUVEC) and human saphenous vein were incubated with [14C]-monomethyl-L-arginine ([14C]-L-NMMA) and the cytosolic extract analysed by high performance liquid chromatography (h.p.l.c.) with on-line radioisotope detection. 2. SGHEC-7, HUVEC and human saphenous vein metabolized [14C]-L-NMMA to a compound which co-eluted with [14C]-citrulline. A second metabolite which co-eluted with [14C]-arginine was evident on the radiochromatograms of HUVEC cytosol and saphenous vein extracts. 3. The intracellular levels of [14C]-L-NMMA and [14C]-citrulline in SGHEC-7 cells incubated with [14C]-L-NMMA (0.5 microCi ml-1: 8.9 microM) for 1 h were 113 +/- 22 and 67.6 +/- 6.2 pmol mg-1 cell protein respectively (n = 7). Co-incubation with NGNGdimethyl-L-arginine (ADMA; 100 microM) but not NGNGdimethyl-L-arginine (SDMA; 100 microM) reduced the intracellular level of [14C]-citrulline to 26.3 +/- 3.7 pmol mg-1 cell protein (P < 0.01; n = 3) without reducing the intracellular level of [14C]-L-NMMA. 4. The intracellular levels of [14C]-citrulline in SGHEC-7 cells incubated with [14C]-L-NMMA for 1 h were reduced following co-incubation with NGnitro-L-arginine methylester (L-NAME; 1 mM), NGnitro-L-arginine (L-NOARG; 1 mM) and L-canavanine (1 mM) to 47.1 +/- 6.2, 24.7 +/- 3.6 and 12.5 +/- 2.8% of control levels (P < 0.001; n = 9).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baydoun A. R., Emery P. W., Pearson J. D., Mann G. E. Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem Biophys Res Commun. 1990 Dec 31;173(3):940–948. doi: 10.1016/s0006-291x(05)80876-9. [DOI] [PubMed] [Google Scholar]
  2. Cantoni G. L. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. [DOI] [PubMed] [Google Scholar]
  3. Feldman P. L., Griffith O. W., Hong H., Stuehr D. J. Irreversible inactivation of macrophage and brain nitric oxide synthase by L-NG-methylarginine requires NADPH-dependent hydroxylation. J Med Chem. 1993 Feb 19;36(4):491–496. doi: 10.1021/jm00056a009. [DOI] [PubMed] [Google Scholar]
  4. Fickling S. A., Tooze J. A., Whitley G. S. Characterization of human umbilical vein endothelial cell lines produced by transfection with the early region of SV40. Exp Cell Res. 1992 Aug;201(2):517–521. doi: 10.1016/0014-4827(92)90303-p. [DOI] [PubMed] [Google Scholar]
  5. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  6. Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
  7. Gillespie J. S., Liu X. R., Martin W. The effects of L-arginine and NG-monomethyl L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Br J Pharmacol. 1989 Dec;98(4):1080–1082. doi: 10.1111/j.1476-5381.1989.tb12650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hecker M., Mitchell J. A., Harris H. J., Katsura M., Thiemermann C., Vane J. R. Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1037–1043. doi: 10.1016/0006-291x(90)90627-y. [DOI] [PubMed] [Google Scholar]
  9. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kakimoto Y., Akazawa S. Isolation and identification of N-G,N-G- and N-G,N'-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J Biol Chem. 1970 Nov 10;245(21):5751–5758. [PubMed] [Google Scholar]
  12. Kakimoto Y., Matsuoka Y., Miyake M., Konishi H. Methylated amino acid residues of proteins of brain and other organs. J Neurochem. 1975 May;24(5):893–902. doi: 10.1111/j.1471-4159.1975.tb03653.x. [DOI] [PubMed] [Google Scholar]
  13. Kim N., Azadzoi K. M., Goldstein I., Saenz de Tejada I. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest. 1991 Jul;88(1):112–118. doi: 10.1172/JCI115266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kimoto M., Tsuji H., Ogawa T., Sasaoka K. Detection of NG,NG-dimethylarginine dimethylaminohydrolase in the nitric oxide-generating systems of rats using monoclonal antibody. Arch Biochem Biophys. 1993 Feb 1;300(2):657–662. doi: 10.1006/abbi.1993.1091. [DOI] [PubMed] [Google Scholar]
  15. Liew F. Y., Millott S., Parkinson C., Palmer R. M., Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol. 1990 Jun 15;144(12):4794–4797. [PubMed] [Google Scholar]
  16. McDermott J. R. Studies on the catabolism of Ng-methylarginine, Ng, Ng-dimethylarginine and Ng, Ng-dimethylarginine in the rabbit. Biochem J. 1976 Jan 15;154(1):179–184. doi: 10.1042/bj1540179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  18. Nakajima T., Matsuoka Y., Kakimoto Y. Isolation and identification of N-G-monomethyl, N-G, N-G-dimethyl- and N-G,N' G-dimethylarginine from the hydrolysate of proteins of bovine brain. Biochim Biophys Acta. 1971 Feb 23;230(2):212–222. doi: 10.1016/0304-4165(71)90206-6. [DOI] [PubMed] [Google Scholar]
  19. Ogawa T., Kimoto M., Sasaoka K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem. 1989 Jun 15;264(17):10205–10209. [PubMed] [Google Scholar]
  20. Ogawa T., Kimoto M., Watanabe H., Sasaoka K. Metabolism of NG,NG-and NG,N'G-dimethylarginine in rats. Arch Biochem Biophys. 1987 Feb 1;252(2):526–537. doi: 10.1016/0003-9861(87)90060-9. [DOI] [PubMed] [Google Scholar]
  21. Park K. S., Lee H. W., Hong S. Y., Shin S., Kim S., Paik W. K. Determination of methylated amino acids in human serum by high-performance liquid chromatography. J Chromatogr. 1988 May 25;440:225–230. doi: 10.1016/s0021-9673(00)94526-6. [DOI] [PubMed] [Google Scholar]
  22. Radomski M. W., Palmer R. M., Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987 Sep;92(1):181–187. doi: 10.1111/j.1476-5381.1987.tb11310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Radomski M. W., Vallance P., Whitley G., Foxwell N., Moncada S. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res. 1993 Jul;27(7):1380–1382. doi: 10.1093/cvr/27.7.1380. [DOI] [PubMed] [Google Scholar]
  24. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ueno S., Sano A., Kotani K., Kondoh K., Kakimoto Y. Distribution of free methylarginines in rat tissues and in the bovine brain. J Neurochem. 1992 Dec;59(6):2012–2016. doi: 10.1111/j.1471-4159.1992.tb10088.x. [DOI] [PubMed] [Google Scholar]
  27. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  28. Vallance P., Leone A., Calver A., Collier J., Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992 Mar 7;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES