Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 May;112(1):59–64. doi: 10.1111/j.1476-5381.1994.tb13029.x

Ontogenic increase in PGE2 and PGF2 alpha receptor density in brain microvessels of pigs.

D Y Li 1, D R Varma 1, S Chemtob 1
PMCID: PMC1910315  PMID: 8032662

Abstract

1. The hypothesis that the relative vasoconstrictor ineffectiveness of prostaglandin E2 (PGE2) and PGF2 alpha on cerebral vessels of newborn pigs might be due to fewer receptors for these prostanoids was tested by comparing receptors for PGE2 (EP) and PGF2 alpha (FP) in cerebral microvessels from newborn and adult pigs. 2. Specific binding of [3H]-PGE2 and [3H]-PGF2 alpha to membranes prepared from brain microvessels showed that EP and FP receptor density (Bmax) in tissues from newborn animals was less than 50% of that determined in tissues from adults. By contrast, estimates of affinity (KD) were unchanged. 3. Specifically bound [3H]-PGE2 to brain microvessels from both the newborn and adult was displaced by AH 6809 (EP1-selective antagonist) by 80-90%, and only by approximately 30-35% by both 11-deoxy PGE1 (EP2/EP3 agonist) and M&B 28,767 (EP3 agonist); butaprost (EP2 agonist) was completely ineffective. 4. PGE2, 17-phenyl trinor PGE2 (EP1 agonist), PGF2 alpha and fenprostalene (PGF2 alpha analogue) caused significantly less increase in inositol 1,4,5-triphosphate (IP3) in brain microvessels from the newborn than in those from adult pigs. The stimulation of IP3 by PGE2 and 17-phenyl trinor PGE2 was almost completely inhibited by the EP1 antagonist, AH 6809. 5. PGE2, 11-deoxy PGE1 and M&B 28,767 produced small reduction of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in adult vessels but no effect in newborn tissues. 6. The lower density of EP and FP receptors in microvessels of newborn pigs compared to adults may explain the reduced ability of PGE2 and PGF2 alpha to stimulate production of IP3 in tissues from newborn animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumbach G. L., Heistad D. D. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13(3-4):303–310. doi: 10.1007/BF02584248. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  3. Bhattacherjee P., Csukas S., Paterson C. A. Prostaglandin E2 binding sites in bovine iris-ciliary body. Invest Ophthalmol Vis Sci. 1990 Jun;31(6):1109–1113. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chemtob S., Beharry K., Rex J., Varma D. R., Aranda J. V. Changes in cerebrovascular prostaglandins and thromboxane as a function of systemic blood pressure. Cerebral blood flow autoregulation of the newborn. Circ Res. 1990 Sep;67(3):674–682. doi: 10.1161/01.res.67.3.674. [DOI] [PubMed] [Google Scholar]
  6. Chemtob S., Beharry K., Rex J., Varma D. R., Aranda J. V. Prostanoids determine the range of cerebral blood flow autoregulation of newborn piglets. Stroke. 1990 May;21(5):777–784. doi: 10.1161/01.str.21.5.777. [DOI] [PubMed] [Google Scholar]
  7. Chemtob S., Laudignon N., Beharry K., Rex J., Varma D., Wolfe L., Aranda J. V. Effects of prostaglandins and indomethacin on cerebral blood flow and cerebral oxygen consumption of conscious newborn piglets. Dev Pharmacol Ther. 1990;14(1):1–14. [PubMed] [Google Scholar]
  8. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  9. Eglen R. M., Whiting R. L. Characterization of the prostanoid receptor profile of enprostil and isomers in smooth muscle and platelets in vitro. Br J Pharmacol. 1989 Dec;98(4):1335–1343. doi: 10.1111/j.1476-5381.1989.tb12682.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaudet R. J., Alam I., Levine L. Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem. 1980 Sep;35(3):653–658. doi: 10.1111/j.1471-4159.1980.tb03704.x. [DOI] [PubMed] [Google Scholar]
  11. Goldstein G. W., Wolinsky J. S., Csejtey J., Diamond I. Isolation of metabolically active capillaries from rat brain. J Neurochem. 1975 Nov;25(5):715–717. doi: 10.1111/j.1471-4159.1975.tb04395.x. [DOI] [PubMed] [Google Scholar]
  12. Hadházy P., Malomvölgyi B., Magyar K. Endogenous prostanoids and arterial contractility. Prostaglandins Leukot Essent Fatty Acids. 1988;32(3):175–185. doi: 10.1016/0952-3278(88)90169-x. [DOI] [PubMed] [Google Scholar]
  13. Halushka P. V., Mais D. E., Mayeux P. R., Morinelli T. A. Thromboxane, prostaglandin and leukotriene receptors. Annu Rev Pharmacol Toxicol. 1989;29:213–239. doi: 10.1146/annurev.pa.29.040189.001241. [DOI] [PubMed] [Google Scholar]
  14. Hayashi S., Park M. K., Kuehl T. J. Relaxant and contractile responses to prostaglandins in premature, newborn and adult baboon cerebral arteries. J Pharmacol Exp Ther. 1985 Jun;233(3):628–635. [PubMed] [Google Scholar]
  15. Heaslip R. J., Sickels B. D. Evidence that prostaglandins can contract the rat aorta via a novel protein kinase C-dependent mechanism. J Pharmacol Exp Ther. 1989 Jul;250(1):44–51. [PubMed] [Google Scholar]
  16. Hernández M. J., Brennan R. W., Bowman G. S. Autoregulation of cerebral blood flow in the newborn dog. Brain Res. 1980 Feb 17;184(1):199–202. doi: 10.1016/0006-8993(80)90598-3. [DOI] [PubMed] [Google Scholar]
  17. Jones S. A., Adamson S. L., Bishai I., Lees J., Engelberts D., Coceani F. Eicosanoids in third ventricular cerebrospinal fluid of fetal and newborn sheep. Am J Physiol. 1993 Jan;264(1 Pt 2):R135–R142. doi: 10.1152/ajpregu.1993.264.1.R135. [DOI] [PubMed] [Google Scholar]
  18. Jumblatt M. M., Paterson C. A. Prostaglandin E2 effects on corneal endothelial cyclic adenosine monophosphate synthesis and cell shape are mediated by a receptor of the EP2 subtype. Invest Ophthalmol Vis Sci. 1991 Feb;32(2):360–365. [PubMed] [Google Scholar]
  19. Kennedy I., Coleman R. A., Humphrey P. P., Levy G. P., Lumley P. Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins. 1982 Nov;24(5):667–689. doi: 10.1016/0090-6980(82)90036-3. [DOI] [PubMed] [Google Scholar]
  20. Lawrence R. A., Jones R. L., Wilson N. H. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on the guinea-pig ileum. Br J Pharmacol. 1992 Feb;105(2):271–278. doi: 10.1111/j.1476-5381.1992.tb14245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leffler C. W., Busija D. W. Prostanoids and pial arteriolar diameter in hypotensive newborn pigs. Am J Physiol. 1987 Apr;252(4 Pt 2):H687–H691. doi: 10.1152/ajpheart.1987.252.4.H687. [DOI] [PubMed] [Google Scholar]
  22. Li D. Y., Varma D. R., Chatterjee T. K., Fernandez H., Abran D., Chemtob S. Fewer PGE2 and PGF2 alpha receptors in brain synaptosomes of newborn than of adult pigs. J Pharmacol Exp Ther. 1993 Dec;267(3):1292–1297. [PubMed] [Google Scholar]
  23. Lincoln T. M., Cornwell T. L. Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels. 1991;28(1-3):129–137. doi: 10.1159/000158852. [DOI] [PubMed] [Google Scholar]
  24. Malet C., Scherrer H., Saavedra J. M., Dray F. Specific binding of [3H]prostaglandin E2 to rat brain membranes and synaptosomes. Brain Res. 1982 Mar 18;236(1):227–233. doi: 10.1016/0006-8993(82)90051-8. [DOI] [PubMed] [Google Scholar]
  25. Mihara S., Doteuchi M., Hara S., Ueda M., Ide M., Fujimoto M., Okabayashi T. Characterization of [3H]U46619 binding in pig aorta smooth muscle membranes. Eur J Pharmacol. 1988 Jun 22;151(1):59–65. doi: 10.1016/0014-2999(88)90692-9. [DOI] [PubMed] [Google Scholar]
  26. Mitchell M. D., Lucas A., Etches P. C., Brunt J. D., Turnbull A. C. Plasma prostaglandin levels during early neonatal life following term and pre-term delivery. Prostaglandins. 1978 Aug;16(2):319–326. doi: 10.1016/0090-6980(78)90033-3. [DOI] [PubMed] [Google Scholar]
  27. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  28. Nathanson J. A. Cerebral microvessels contain a beta 2-adrenergic receptor. Life Sci. 1980 May 26;26(21):1793–1799. doi: 10.1016/0024-3205(80)90580-9. [DOI] [PubMed] [Google Scholar]
  29. RAPELA C. E., GREEN H. D. AUTOREGULATION OF CANINE CEREBRAL BLOOD FLOW. Circ Res. 1964 Aug;15:SUPPL–SUPPL:212. [PubMed] [Google Scholar]
  30. Santoian E. C., Angerio A. D., Schneidkraut M. J., Ramwell P. W., Kot P. A. Role of calcium in U 46619 and PGF2 alpha pulmonary vasoconstriction in rat lungs. Am J Physiol. 1989 Dec;257(6 Pt 2):H2001–H2005. doi: 10.1152/ajpheart.1989.257.6.H2001. [DOI] [PubMed] [Google Scholar]
  31. Sasaki T., Kassell N. F., Torner J. C., Maixner W., Turner D. M. Pharmacological comparison of isolated monkey and dog cerebral arteries. Stroke. 1985 May-Jun;16(3):482–489. doi: 10.1161/01.str.16.3.482. [DOI] [PubMed] [Google Scholar]
  32. Stinger R. B., Fitzpatrick T. M., Corey E. J., Ramwell P. W., Rose J. C., Kot P. A. Selective antagonism of prostaglandin F2 alpha-mediated vascular responses by N-dimethylamino substitution of prostaglandin F2 alpha. J Pharmacol Exp Ther. 1982 Mar;220(3):521–525. [PubMed] [Google Scholar]
  33. Suba E. A., Roth B. L. Prostaglandins activate phosphoinositide metabolism in rat aorta. Eur J Pharmacol. 1987 Apr 29;136(3):325–332. doi: 10.1016/0014-2999(87)90305-0. [DOI] [PubMed] [Google Scholar]
  34. Sugimoto Y., Namba T., Honda A., Hayashi Y., Negishi M., Ichikawa A., Narumiya S. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem. 1992 Apr 5;267(10):6463–6466. [PubMed] [Google Scholar]
  35. Szasz G. A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin Chem. 1969 Feb;15(2):124–136. [PubMed] [Google Scholar]
  36. Watabe A., Sugimoto Y., Honda A., Irie A., Namba T., Negishi M., Ito S., Narumiya S., Ichikawa A. Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem. 1993 Sep 25;268(27):20175–20178. [PubMed] [Google Scholar]
  37. White R. P., Hagen A. A. Cerebrovascular actions of prostaglandins. Pharmacol Ther. 1982;18(3):313–331. doi: 10.1016/0163-7258(82)90035-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES