Abstract
The rotavirus nonstructural protein NSP5, a product of the smallest genomic RNA segment, is a phosphoprotein containing O-linked N-acetylglucosamine. We investigated the phosphorylation of NSP5 in monkey MA104 cells infected with simian rotavirus SA11. Immunoprecipitated NSP5 was analyzed with respect to phosphorylation and protein kinase activity. After metabolic labeling of NSP5 with 32Pi, only serine residues were phosphorylated. Separation of tryptic peptides revealed four to six strongly labeled products and several weakly labeled products. Phosphorylation at multiple sites was also shown by two-dimensional polyacrylamide gel electrophoresis (PAGE), where several isoforms of NSP5 with different pIs were identified. Analysis by PAGE of protein reacting with an NSP5-specific antiserum showed major forms at 26 to 28 and 35 kDa. Moreover, there were polypeptides migrating between 28 and 35 kDa. Treatment of the immunoprecipitated material with protein phosphatase 2A shifted the mobilities of the 28- to 35-kDa polypeptides to the 26-kDa position, suggesting that the slower electrophoretic mobility was caused by phosphorylation. Radioactive labeling showed that the 26-kDa form contained additional phosphate groups that were not removed by protein phosphatase 2A. The immunoprecipitated NSP5 possessed protein kinase activity. Incubation with [gamma-32P]ATP resulted in 32P labeling of 28- to 35-kDa NSP5. The distribution of 32P radioactivity between the components of the complex was similar to the phosphorylation in vivo. Assays of the protein kinase activity of a glutathione S-transferase-NSP5 fusion polypeptide expressed in Escherichia coli demonstrated autophosphorylation, suggesting that NSP5 was the active component in the material isolated from infected cells.
Full Text
The Full Text of this article is available as a PDF (428.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1995. Nucleic Acids Res. 1996 Jan 1;24(1):189–196. doi: 10.1093/nar/24.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barik S., Banerjee A. K. Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6570–6574. doi: 10.1073/pnas.89.14.6570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellinzoni R. C., Blackhall J. O., Mattion N. M., Estes M. K., Snodgrass D. R., LaTorre J. L., Scodeller E. A. Serological characterization of bovine rotaviruses isolated from dairy and beef herds in Argentina. J Clin Microbiol. 1989 Nov;27(11):2619–2623. doi: 10.1128/jcm.27.11.2619-2623.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
- Chou T. Y., Hart G. W., Dang C. V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem. 1995 Aug 11;270(32):18961–18965. doi: 10.1074/jbc.270.32.18961. [DOI] [PubMed] [Google Scholar]
- Das T., Schuster A., Schneider-Schaulies S., Banerjee A. K. Involvement of cellular casein kinase II in the phosphorylation of measles virus P protein: identification of phosphorylation sites. Virology. 1995 Aug 1;211(1):218–226. doi: 10.1006/viro.1995.1394. [DOI] [PubMed] [Google Scholar]
- De B. P., Gupta S., Gupta S., Banerjee A. K. Cellular protein kinase C isoform zeta regulates human parainfluenza virus type 3 replication. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5204–5208. doi: 10.1073/pnas.92.11.5204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devaney M. A., Kendall J., Grubman M. J. Characterization of a nonstructural phosphoprotein of two orbiviruses. Virus Res. 1988 Sep;11(2):151–164. doi: 10.1016/0168-1702(88)90040-8. [DOI] [PubMed] [Google Scholar]
- Estes M. K., Graham D. Y., Ramig R. F., Ericson B. L. Heterogeneity in the structural glycoprotein (VP7) of simian rotavirus SA11. Virology. 1982 Oct 15;122(1):8–14. doi: 10.1016/0042-6822(82)90372-5. [DOI] [PubMed] [Google Scholar]
- Gallegos C. O., Patton J. T. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology. 1989 Oct;172(2):616–627. doi: 10.1016/0042-6822(89)90204-3. [DOI] [PubMed] [Google Scholar]
- Gao Y., Lenard J. Multimerization and transcriptional activation of the phosphoprotein (P) of vesicular stomatitis virus by casein kinase-II. EMBO J. 1995 Mar 15;14(6):1240–1247. doi: 10.1002/j.1460-2075.1995.tb07107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González S. A., Burrone O. R. Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology. 1991 May;182(1):8–16. doi: 10.1016/0042-6822(91)90642-o. [DOI] [PubMed] [Google Scholar]
- Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
- Hart G. W. Glycosylation. Curr Opin Cell Biol. 1992 Dec;4(6):1017–1023. doi: 10.1016/0955-0674(92)90134-x. [DOI] [PubMed] [Google Scholar]
- Hua J., Chen X., Patton J. T. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. J Virol. 1994 Jun;68(6):3990–4000. doi: 10.1128/jvi.68.6.3990-4000.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huismans H., van Dijk A. A., Bauskin A. R. In vitro phosphorylation and purification of a nonstructural protein of bluetongue virus with affinity for single-stranded RNA. J Virol. 1987 Nov;61(11):3589–3595. doi: 10.1128/jvi.61.11.3589-3595.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- López S., Arias C. F. Protein NS26 is highly conserved among porcine rotavirus strains. Nucleic Acids Res. 1993 Feb 25;21(4):1042–1042. doi: 10.1093/nar/21.4.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattion N. M., Bellinzoni R. C., Blackhall J. O., La Torre J. L., Scodeller E. A. Antigenic characterization of swine rotaviruses in Argentina. J Clin Microbiol. 1989 Apr;27(4):795–798. doi: 10.1128/jcm.27.4.795-798.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattion N. M., Mitchell D. B., Both G. W., Estes M. K. Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology. 1991 Mar;181(1):295–304. doi: 10.1016/0042-6822(91)90495-w. [DOI] [PubMed] [Google Scholar]
- Mazumder B., Barik S. Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology. 1994 Nov 15;205(1):104–111. doi: 10.1006/viro.1994.1624. [DOI] [PubMed] [Google Scholar]
- Mumby M. C., Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993 Oct;73(4):673–699. doi: 10.1152/physrev.1993.73.4.673. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Patton J. T., Gallegos C. O. Rotavirus RNA replication: single-stranded RNA extends from the replicase particle. J Gen Virol. 1990 May;71(Pt 5):1087–1094. doi: 10.1099/0022-1317-71-5-1087. [DOI] [PubMed] [Google Scholar]
- Patton J. T., Gallegos C. O. Structure and protein composition of the rotavirus replicase particle. Virology. 1988 Oct;166(2):358–365. doi: 10.1016/0042-6822(88)90506-5. [DOI] [PubMed] [Google Scholar]
- Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol. 1993 Jun;67(6):3159–3165. doi: 10.1128/jvi.67.6.3159-3165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takacs A. M., Barik S., Das T., Banerjee A. K. Phosphorylation of specific serine residues within the acidic domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. J Virol. 1992 Oct;66(10):5842–5848. doi: 10.1128/jvi.66.10.5842-5848.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theron J., Uitenweerde J. M., Huismans H., Nel L. H. Comparison of the expression and phosphorylation of the non-structural protein NS2 of three different orbiviruses: evidence for the involvement of an ubiquitous cellular kinase. J Gen Virol. 1994 Dec;75(Pt 12):3401–3411. doi: 10.1099/0022-1317-75-12-3401. [DOI] [PubMed] [Google Scholar]
- Thomas C. P., Booth T. F., Roy P. Synthesis of bluetongue virus-encoded phosphoprotein and formation of inclusion bodies by recombinant baculovirus in insect cells: it binds the single-stranded RNA species. J Gen Virol. 1990 Sep;71(Pt 9):2073–2083. doi: 10.1099/0022-1317-71-9-2073. [DOI] [PubMed] [Google Scholar]
- Villanueva N., Navarro J., Méndez E., García-Albert I. Identification of a protein kinase involved in the phosphorylation of the C-terminal region of human respiratory syncytial virus P protein. J Gen Virol. 1994 Mar;75(Pt 3):555–565. doi: 10.1099/0022-1317-75-3-555. [DOI] [PubMed] [Google Scholar]
- Welch S. K., Crawford S. E., Estes M. K. Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol. 1989 Sep;63(9):3974–3982. doi: 10.1128/jvi.63.9.3974-3982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]