Abstract
1. We have examined the effects of inhibition of nitric oxide synthase, cyclo-oxygenase and lipoxygenase on the responses of renal arcuate arteries of Wistar rats, with and without endothelium, to noradrenaline, potassium chloride, endothelin-1, acetylcholine and sodium nitroprusside. 2. Noradrenaline, potassium chloride and endothelin-1 caused concentration-dependent contraction of the vessels. Indomethacin (14 microM) attenuated the contractile response to noradrenaline and to potassium chloride. The inhibitory effect of indomethacin persisted following endothelial removal. 3. Acetylcholine produced concentration-dependent relaxation of the vessels which was potentiated by indomethacin (14 microM). 4. NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) did not affect the contractile response to either noradrenaline or potassium chloride but abolished relaxation to acetylcholine. In addition, L-NAME abolished the affects of indomethacin on acetylcholine-induced relaxation and noradrenaline- and potassium chloride-induced contraction. 5. BWC755C attenuated noradrenaline and potassium chloride-induced contraction. This effect persisted in the presence of indomethacin. 6. In vessels pretreated with CHAPS, BW755C inhibited both noradrenaline and potassium chloride-induced contraction. In these vessels BW755C had no additional inhibitory effect to indomethacin on noradrenaline- and potassium-induced contraction. 7. Inhibition of nitric oxide synthase with L-NAME (100 microM) attenuated the effect of BW755C on noradrenaline- and potassium-induced contraction. 8. BW755C alone did not affect endothelium-dependent relaxation as assessed by the response to acetylcholine. However, in the presence of indomethacin, BW755C inhibited acetylcholine-induced relaxation. 9. BW755C did not affect endothelium-independent relaxation as assessed by the response to sodium nitroprusside in vessels with or without endothelium.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonipillai I. 12-lipoxygenase products are potent inhibitors of prostacyclin-induced renin release. Proc Soc Exp Biol Med. 1990 Jul;194(3):224–230. doi: 10.3181/00379727-194-43083. [DOI] [PubMed] [Google Scholar]
- Badr K. F., Brenner B. M., Ichikawa I. Effects of leukotriene D4 on glomerular dynamics in the rat. Am J Physiol. 1987 Aug;253(2 Pt 2):F239–F243. doi: 10.1152/ajprenal.1987.253.2.F239. [DOI] [PubMed] [Google Scholar]
- Baylis C., Harton P., Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol. 1990 Dec;1(6):875–881. doi: 10.1681/ASN.V16875. [DOI] [PubMed] [Google Scholar]
- Carroll M. A., Garcia M. P., Falck J. R., McGiff J. C. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. J Pharmacol Exp Ther. 1992 Jan;260(1):104–109. [PubMed] [Google Scholar]
- Dai F. X., Skopec J., Diederich A., Diederich D. Prostaglandin H2 and thromboxane A2 are contractile factors in intrarenal arteries of spontaneously hypertensive rats. Hypertension. 1992 Jun;19(6 Pt 2):795–798. doi: 10.1161/01.hyp.19.6.795. [DOI] [PubMed] [Google Scholar]
- Diederich D., Yang Z. H., Bühler F. R., Lüscher T. F. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol. 1990 Feb;258(2 Pt 2):H445–H451. doi: 10.1152/ajpheart.1990.258.2.H445. [DOI] [PubMed] [Google Scholar]
- Dohi Y., Thiel M. A., Bühler F. R., Lüscher T. F. Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension. Hypertension. 1990 Aug;16(2):170–179. doi: 10.1161/01.hyp.16.2.170. [DOI] [PubMed] [Google Scholar]
- Farber H. W., Center D. M., Rounds S. Bovine and human endothelial cell production of neutrophil chemoattractant activity in response to components of the angiotensin system. Circ Res. 1985 Dec;57(6):898–902. doi: 10.1161/01.res.57.6.898. [DOI] [PubMed] [Google Scholar]
- Fretschner M., Endlich K., Gulbins E., Lang R. E., Schlottmann K., Steinhausen M. Effects of endothelin on the renal microcirculation of the split hydronephrotic rat kidney. Ren Physiol Biochem. 1991 May-Jun;14(3):112–127. doi: 10.1159/000173394. [DOI] [PubMed] [Google Scholar]
- Henriksson P., Hamberg M., Diczfalusy U. Formation of 15-HETE as a major hydroxyeicosatetraenoic acid in the atherosclerotic vessel wall. Biochim Biophys Acta. 1985 Apr 25;834(2):272–274. doi: 10.1016/0005-2760(85)90166-3. [DOI] [PubMed] [Google Scholar]
- Higgs G. A., Flower R. J., Vane J. R. A new approach to anti-inflammatory drugs. Biochem Pharmacol. 1979 Jun 15;28(12):1959–1961. doi: 10.1016/0006-2952(79)90651-8. [DOI] [PubMed] [Google Scholar]
- Imig J. D., Roman R. J. Nitric oxide modulates vascular tone in preglomerular arterioles. Hypertension. 1992 Jun;19(6 Pt 2):770–774. doi: 10.1161/01.hyp.19.6.770. [DOI] [PubMed] [Google Scholar]
- Jahn B., Hänsch G. M. Oxygen radical generation in human platelets: dependence on 12-lipoxygenase activity and on the glutathione cycle. Int Arch Allergy Appl Immunol. 1990;93(1):73–79. doi: 10.1159/000235282. [DOI] [PubMed] [Google Scholar]
- Kanner J., Harel S., Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 1992 Jan;27(1):46–49. doi: 10.1007/BF02537058. [DOI] [PubMed] [Google Scholar]
- Kato T., Iwama Y., Okumura K., Hashimoto H., Ito T., Satake T. Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension. 1990 May;15(5):475–481. doi: 10.1161/01.hyp.15.5.475. [DOI] [PubMed] [Google Scholar]
- Koga T., Takata Y., Kobayashi K., Takishita S., Yamashita Y., Fujishima M. Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension. 1989 Nov;14(5):542–548. doi: 10.1161/01.hyp.14.5.542. [DOI] [PubMed] [Google Scholar]
- Larrue J., Rigaud M., Razaka G., Daret D., Demond-Henri J., Bricaud H. Formation of monohydroxyeicosatetraenoic acids from arachidonic acid by cultured rabbit aortic smooth muscle cells. Biochem Biophys Res Commun. 1983 Apr 15;112(1):242–249. doi: 10.1016/0006-291x(83)91822-3. [DOI] [PubMed] [Google Scholar]
- Lin L., Nasjletti A. Role of endothelium-derived prostanoid in angiotensin-induced vasoconstriction. Hypertension. 1991 Aug;18(2):158–164. doi: 10.1161/01.hyp.18.2.158. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Aarhus L. L., Vanhoutte P. M. Indomethacin improves the impaired endothelium-dependent relaxations in small mesenteric arteries of the spontaneously hypertensive rat. Am J Hypertens. 1990 Jan;3(1):55–58. doi: 10.1093/ajh/3.1.55. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Vanhoutte P. M. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension. 1986 Apr;8(4):344–348. doi: 10.1161/01.hyp.8.4.344. [DOI] [PubMed] [Google Scholar]
- Ma Y. H., Harder D. R., Clark J. E., Roman R. J. Effects of 12-HETE on isolated dog renal arcuate arteries. Am J Physiol. 1991 Aug;261(2 Pt 2):H451–H456. doi: 10.1152/ajpheart.1991.261.2.H451. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Gryglewski R. J. Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9164–9168. doi: 10.1073/pnas.83.23.9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
- Nigro D., Fortes Z. B., Scivotetto R., Carvalho M. H. Simultaneous release of endothelium-derived relaxing and contracting factors induced by noradrenaline in normotensive rats. Gen Pharmacol. 1990;21(4):443–446. doi: 10.1016/0306-3623(90)90695-i. [DOI] [PubMed] [Google Scholar]
- Radermacher J., Förstermann U., Frölich J. C. Endothelium-derived relaxing factor influences renal vascular resistance. Am J Physiol. 1990 Jul;259(1 Pt 2):F9–17. doi: 10.1152/ajprenal.1990.259.1.F9. [DOI] [PubMed] [Google Scholar]
- Revtyak G. E., Hughes M. J., Johnson A. R., Campbell W. B. Histamine stimulation of prostaglandin and HETE synthesis in human endothelial cells. Am J Physiol. 1988 Aug;255(2 Pt 1):C214–C225. doi: 10.1152/ajpcell.1988.255.2.C214. [DOI] [PubMed] [Google Scholar]
- Saito F., Hori M. T., Ideguchi Y., Berger M., Golub M., Stern N., Tuck M. L. 12-Lipoxygenase products modulate calcium signals in vascular smooth muscle cells. Hypertension. 1992 Aug;20(2):138–143. doi: 10.1161/01.hyp.20.2.138. [DOI] [PubMed] [Google Scholar]
- Salmon J. A., Simmons P. M., Moncada S. The effects of BW755C and other anti-inflammatory drugs on eicosanoid concentrations and leukocyte accumulation in experimentally-induced acute inflammation. J Pharm Pharmacol. 1983 Dec;35(12):808–813. doi: 10.1111/j.2042-7158.1983.tb02901.x. [DOI] [PubMed] [Google Scholar]
- Semb A. G., Vaage J. Oxygen free radical-induced injury in isolated rat hearts: effects of ibuprofen and BW 755c. Scand J Clin Lab Invest. 1991 Jun;51(4):377–383. doi: 10.1080/00365519109091629. [DOI] [PubMed] [Google Scholar]
- Shannon V. R., Crouch E. C., Takahashi Y., Ueda N., Yamamoto S., Holtzman M. J. Related expression of arachidonate 12- and 15-lipoxygenases in animal and human lung tissue. Am J Physiol. 1991 Dec;261(6 Pt 1):L399–L405. doi: 10.1152/ajplung.1991.261.6.L399. [DOI] [PubMed] [Google Scholar]
- Tolins J. P., Palmer R. M., Moncada S., Raij L. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Am J Physiol. 1990 Mar;258(3 Pt 2):H655–H662. doi: 10.1152/ajpheart.1990.258.3.H655. [DOI] [PubMed] [Google Scholar]
- Van Diest M. J., Verbeuren T. J., Herman A. G. 15-lipoxygenase metabolites of arachidonic acid evoke contractions and relaxations in isolated canine arteries: role of thromboxane receptors, endothelial cells and cyclooxygenase. J Pharmacol Exp Ther. 1991 Jan;256(1):194–203. [PubMed] [Google Scholar]