Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jun;112(2):659–665. doi: 10.1111/j.1476-5381.1994.tb13126.x

Effects of the new A2 adenosine receptor antagonist 8FB-PTP, an 8 substituted pyrazolo-triazolo-pyrimidine, on in vitro functional models.

S Dionisotti 1, A Conti 1, D Sandoli 1, C Zocchi 1, F Gatta 1, E Ongini 1
PMCID: PMC1910387  PMID: 8075885

Abstract

1. We have characterized the in vitro pharmacological profile of putative A2 adenosine antagonists, two non-xanthine compounds, 5-amino-8-(4-fluorobenzyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (8FB-PTP) and 5-amino-9-chloro-2-(2-furyl 1,2,4-triazolo [1,5-c] quinazoline (CGS 15943), and the xanthine derivative (E)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropyl- xanthine (KF 17837). 2. In binding studies on bovine brain, 8FB-PTP was the most potent (Ki = 0.074 nM) and selective (28 fold) drug on A2 receptors, whereas CGS 15943 and KF 17837 exhibited affinity in the low and high nanomolar range, respectively, and showed little selectivity. 3. In functional studies, 8FB-PTP antagonized 5'-N-ethyl-carboxamidoadenosine (NECA)-induced vasorelaxation of bovine coronary artery (pA2 = 7.98) and NECA-induced inhibition of rabbit platelet aggregation (pA2 = 8.20). CGS 15943 showed weak activity in the platelet aggregation model (pA2 = 7.43) and failed to antagonize NECA-induced vasodilatation. KF 17837 was ineffective in both models up to micromolar concentrations. 4. Antagonism of A1-mediated responses was tested versus 2-chloro-N6-cyclopentyladenosine (CCPA) in rat atria. 8FB-PTP and CGS 15943 also antagonized competitively the negative chronotropic response induced by CCPA. Conversely, KF 17837 was unable to reverse A1-mediated responses. 5. 8FB-PTP is a potent and competitive antagonist of responses mediated by A2 adenosine receptors. The data provided a basis to reduce, by further chemical modifications, the affinity at A1 receptor and therefore enhance A2 receptor selectivity.

Full text

PDF
659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn H. S., Foster M., Foster C., Sybertz E., Wells J. N. Evidence for essential histidine and cysteine residues in calcium/calmodulin-sensitive cyclic nucleotide phosphodiesterase. Biochemistry. 1991 Jul 9;30(27):6754–6760. doi: 10.1021/bi00241a018. [DOI] [PubMed] [Google Scholar]
  2. BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruns R. F., Fergus J. H., Badger E. W., Bristol J. A., Santay L. A., Hartman J. D., Hays S. J., Huang C. C. Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jan;335(1):59–63. doi: 10.1007/BF00165037. [DOI] [PubMed] [Google Scholar]
  5. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  6. Conti A., Monopoli A., Gamba M., Borea P. A., Ongini E. Effects of selective A1 and A2 adenosine receptor agonists on cardiovascular tissues. Naunyn Schmiedebergs Arch Pharmacol. 1993 Jul;348(1):108–112. doi: 10.1007/BF00168545. [DOI] [PubMed] [Google Scholar]
  7. Cornfield L. J., Hu S., Hurt S. D., Sills M. A. [3H]2-phenylaminoadenosine ([3H]CV 1808) labels a novel adenosine receptor in rat brain. J Pharmacol Exp Ther. 1992 Nov;263(2):552–561. [PubMed] [Google Scholar]
  8. Dionisotti S., Zocchi C., Varani K., Borea P. A., Ongini E. Effects of adenosine derivatives on human and rabbit platelet aggregation. Correlation of adenosine receptor affinities and antiaggregatory activity. Naunyn Schmiedebergs Arch Pharmacol. 1992 Dec;346(6):673–676. doi: 10.1007/BF00168741. [DOI] [PubMed] [Google Scholar]
  9. Ghai G., Francis J. E., Williams M., Dotson R. A., Hopkins M. F., Cote D. T., Goodman F. R., Zimmerman M. B. Pharmacological characterization of CGS 15943A: a novel nonxanthine adenosine antagonist. J Pharmacol Exp Ther. 1987 Sep;242(3):784–790. [PubMed] [Google Scholar]
  10. Gurden M. F., Coates J., Ellis F., Evans B., Foster M., Hornby E., Kennedy I., Martin D. P., Strong P., Vardey C. J. Functional characterization of three adenosine receptor types. Br J Pharmacol. 1993 Jul;109(3):693–698. doi: 10.1111/j.1476-5381.1993.tb13629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobson K. A., Gallo-Rodriguez C., Melman N., Fischer B., Maillard M., van Bergen A., van Galen P. J., Karton Y. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem. 1993 May 14;36(10):1333–1342. doi: 10.1021/jm00062a005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobson K. A., Nikodijević O., Padgett W. L., Gallo-Rodriguez C., Maillard M., Daly J. W. 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2-adenosine antagonist in vitro and in vivo. FEBS Lett. 1993 May 24;323(1-2):141–144. doi: 10.1016/0014-5793(93)81466-d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobson K. A., van Galen P. J., Williams M. Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. J Med Chem. 1992 Feb 7;35(3):407–422. doi: 10.1021/jm00081a001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A., Williams M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther. 1989 Dec;251(3):888–893. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Libert F., Schiffmann S. N., Lefort A., Parmentier M., Gérard C., Dumont J. E., Vanderhaeghen J. J., Vassart G. The orphan receptor cDNA RDC7 encodes an A1 adenosine receptor. EMBO J. 1991 Jul;10(7):1677–1682. doi: 10.1002/j.1460-2075.1991.tb07691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maenhaut C., Van Sande J., Libert F., Abramowicz M., Parmentier M., Vanderhaegen J. J., Dumont J. E., Vassart G., Schiffmann S. RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1169–1178. doi: 10.1016/s0006-291x(05)80909-x. [DOI] [PubMed] [Google Scholar]
  19. Makujina S. R., Sabouni M. H., Bhatia S., Douglas F. L., Mustafa S. J. Vasodilatory effects of adenosine A2 receptor agonists CGS 21680 and CGS 22492 in human vasculature. Eur J Pharmacol. 1992 Oct 20;221(2-3):243–247. doi: 10.1016/0014-2999(92)90708-c. [DOI] [PubMed] [Google Scholar]
  20. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  21. Nonaka Y., Shimada J., Nonaka H., Koike N., Aoki N., Kobayashi H., Kase H., Yamaguchi K., Suzuki F. Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-Dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine. J Med Chem. 1993 Nov 12;36(23):3731–3733. doi: 10.1021/jm00075a031. [DOI] [PubMed] [Google Scholar]
  22. Sabouni M. H., Brown G. L., Kotake A. N., Douglas F. L., Mustafa S. J. Effects of CGS-15943A on the relaxations produced by adenosine analogs in human blood vessels. Eur J Pharmacol. 1990 Oct 23;187(3):525–530. doi: 10.1016/0014-2999(90)90381-f. [DOI] [PubMed] [Google Scholar]
  23. Shimada J., Suzuki F., Nonaka H., Ishii A., Ichikawa S. (E)-1,3-dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective adenosine A2 antagonists. J Med Chem. 1992 Jun 12;35(12):2342–2345. doi: 10.1021/jm00090a027. [DOI] [PubMed] [Google Scholar]
  24. Tallarida R. J., Cowan A., Adler M. W. pA2 and receptor differentiation: a statistical analysis of competitive antagonism. Life Sci. 1979 Aug 20;25(8):637–654. doi: 10.1016/0024-3205(79)90505-8. [DOI] [PubMed] [Google Scholar]
  25. Williams M., Francis J., Ghai G., Braunwalder A., Psychoyos S., Stone G. A., Cash W. D. Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther. 1987 May;241(2):415–420. [PubMed] [Google Scholar]
  26. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]
  27. van Galen P. J., Stiles G. L., Michaels G., Jacobson K. A. Adenosine A1 and A2 receptors: structure--function relationships. Med Res Rev. 1992 Sep;12(5):423–471. doi: 10.1002/med.2610120502. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES