Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):191–198. doi: 10.1128/jvi.71.1.191-198.1997

Dextran sulfate can act as an artificial receptor to mediate a type-specific herpes simplex virus infection via glycoprotein B.

A P Dyer 1, B W Banfield 1, D Martindale 1, D M Spannier 1, F Tufaro 1
PMCID: PMC191039  PMID: 8985338

Abstract

Herpes simplex virus (HSV) adsorption to host cells is mediated, at least in part, by the interaction of viral glycoproteins with cell surface glycosaminoglycans such as heparan sulfate and chondroitin sulfate. To investigate the contribution of various cell surface components in the infection pathway, we isolated a mutant cell line, sog9, which is unable to synthesize glycosaminoglycans (B. W. Banfield, Y. Leduc, L. Esford, K. Schubert, and F. Tufaro, J. Virol. 69:3290-3298, 1995). Although HSV-1 and HSV-2 infection of sog9 cells is diminished, the cells are still infected at about 0.5% efficiency, which suggests that these cells normally express at least one nonglycosaminoglycan receptor. In this report, we used sog9 cells to test whether glycosaminoglycan analogs, such as dextran sulfate (DS), could functionally substitute for cellular glycosaminoglycans to initiate HSV infection. We show that high-molecular-weight DS added either prior to or during inoculation stimulated HSV-1 but not HSV-2 infection by up to 35-fold; DS added after viral adsorption had no effect on infection efficiency. Moreover, DS stimulated HSV-1 infection at 4 degrees C, indicating that this compound impinged on an early, energy-independent step in infection. Using radiolabeled virus, we showed that HSV-1 is more efficient than HSV-2 in adsorbing to DS immobilized on microtiter wells. This raised the possibility that only HSV-1 could engage additional receptors to initiate infection in the presence of DS. To determine which viral component(s) facilitated DS stimulation, a panel of intertypic recombinants and deletion mutant viruses was investigated. These assays showed that DS stimulation of infection is mediated primarily by gB-1. Thus, this study provides direct evidence that a principal role for cell surface glycosaminoglycans in HSV infection is to provide an efficient matrix for virus adsorption. Moreover, by using DS as an alternative adsorption matrix (a trans receptor), we uncovered a functional, type-specific interaction of HSV-1 with a cell surface receptor.

Full Text

The Full Text of this article is available as a PDF (215.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addison C., Rixon F. J., Palfreyman J. W., O'Hara M., Preston V. G. Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology. 1984 Oct 30;138(2):246–259. doi: 10.1016/0042-6822(84)90349-0. [DOI] [PubMed] [Google Scholar]
  2. Banfield B. W., Leduc Y., Esford L., Schubert K., Tufaro F. Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway. J Virol. 1995 Jun;69(6):3290–3298. doi: 10.1128/jvi.69.6.3290-3298.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banfield B. W., Leduc Y., Esford L., Visalli R. J., Brandt C. R., Tufaro F. Evidence for an interaction of herpes simplex virus with chondroitin sulfate proteoglycans during infection. Virology. 1995 Apr 20;208(2):531–539. doi: 10.1006/viro.1995.1184. [DOI] [PubMed] [Google Scholar]
  4. Brunetti C. R., Burke R. L., Hoflack B., Ludwig T., Dingwell K. S., Johnson D. C. Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. J Virol. 1995 Jun;69(6):3517–3528. doi: 10.1128/jvi.69.6.3517-3528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunetti C. R., Burke R. L., Kornfeld S., Gregory W., Masiarz F. R., Dingwell K. S., Johnson D. C. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem. 1994 Jun 24;269(25):17067–17074. [PubMed] [Google Scholar]
  6. Eisenberg R. J., Ponce de Leon M., Friedman H. M., Fries L. F., Frank M. M., Hastings J. C., Cohen G. H. Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog. 1987 Dec;3(6):423–435. doi: 10.1016/0882-4010(87)90012-x. [DOI] [PubMed] [Google Scholar]
  7. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature. 1984 Jun 14;309(5969):633–635. doi: 10.1038/309633a0. [DOI] [PubMed] [Google Scholar]
  8. Friedman H. M., Glorioso J. C., Cohen G. H., Hastings J. C., Harris S. L., Eisenberg R. J. Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J Virol. 1986 Nov;60(2):470–475. doi: 10.1128/jvi.60.2.470-475.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fries L. F., Friedman H. M., Cohen G. H., Eisenberg R. J., Hammer C. H., Frank M. M. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol. 1986 Sep 1;137(5):1636–1641. [PubMed] [Google Scholar]
  10. Fuller A. O., Lee W. C. Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. J Virol. 1992 Aug;66(8):5002–5012. doi: 10.1128/jvi.66.8.5002-5012.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerber S. I., Belval B. J., Herold B. C. Differences in the role of glycoprotein C of HSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virology. 1995 Dec 1;214(1):29–39. doi: 10.1006/viro.1995.9957. [DOI] [PubMed] [Google Scholar]
  12. Greenspan P., Gutman R. L. Endocytosis of sulfatides by macrophages: relationship to the cellular uptake of phosphatidylserine. J Leukoc Biol. 1994 Jan;55(1):99–104. doi: 10.1002/jlb.55.1.99. [DOI] [PubMed] [Google Scholar]
  13. Gruenberg J., Howell K. E. Membrane traffic in endocytosis: insights from cell-free assays. Annu Rev Cell Biol. 1989;5:453–481. doi: 10.1146/annurev.cb.05.110189.002321. [DOI] [PubMed] [Google Scholar]
  14. Gruenheid S., Gatzke L., Meadows H., Tufaro F. Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J Virol. 1993 Jan;67(1):93–100. doi: 10.1128/jvi.67.1.93-100.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herold B. C., Gerber S. I., Belval B. J., Siston A. M., Shulman N. Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry. J Virol. 1996 Jun;70(6):3461–3469. doi: 10.1128/jvi.70.6.3461-3469.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 1994 Jun;75(Pt 6):1211–1222. doi: 10.1099/0022-1317-75-6-1211. [DOI] [PubMed] [Google Scholar]
  17. Herold B. C., WuDunn D., Soltys N., Spear P. G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991 Mar;65(3):1090–1098. doi: 10.1128/jvi.65.3.1090-1098.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ida H., Kurata A., Eguchi K., Yamashita I., Nakashima M., Sakai M., Kawabe Y., Nakamura T., Nagataki S. Mechanism of inhibitory effect of dextran sulfate and heparin on human T-cell lymphotropic virus type I (HTLV-I)-induced syncytium formation in vitro: role of cell-to-cell contact. Antiviral Res. 1994 Feb;23(2):143–159. doi: 10.1016/0166-3542(94)90041-8. [DOI] [PubMed] [Google Scholar]
  19. Krieger M., Acton S., Ashkenas J., Pearson A., Penman M., Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem. 1993 Mar 5;268(7):4569–4572. [PubMed] [Google Scholar]
  20. Krieger M. Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci. 1992 Apr;17(4):141–146. doi: 10.1016/0968-0004(92)90322-z. [DOI] [PubMed] [Google Scholar]
  21. Krumbiegel M., Dimitrov D. S., Puri A., Blumenthal R. Dextran sulfate inhibits fusion of influenza virus and cells expressing influenza hemagglutinin with red blood cells. Biochim Biophys Acta. 1992 Oct 5;1110(2):158–164. doi: 10.1016/0005-2736(92)90353-n. [DOI] [PubMed] [Google Scholar]
  22. Langeland N., Holmsen H., Lillehaug J. R., Haarr L. Evidence that neomycin inhibits binding of herpes simplex virus type 1 to the cellular receptor. J Virol. 1987 Nov;61(11):3388–3393. doi: 10.1128/jvi.61.11.3388-3393.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Langeland N., Moore L. J., Holmsen H., Haarr L. Interaction of polylysine with the cellular receptor for herpes simplex virus type 1. J Gen Virol. 1988 Jun;69(Pt 6):1137–1145. doi: 10.1099/0022-1317-69-6-1137. [DOI] [PubMed] [Google Scholar]
  24. Langeland N., Oyan A. M., Marsden H. S., Cross A., Glorioso J. C., Moore L. J., Haarr L. Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. J Virol. 1990 Mar;64(3):1271–1277. doi: 10.1128/jvi.64.3.1271-1277.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leong J. M., Morrissey P. E., Ortega-Barria E., Pereira M. E., Coburn J. Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1995 Mar;63(3):874–883. doi: 10.1128/iai.63.3.874-883.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996 Nov 1;87(3):427–436. doi: 10.1016/s0092-8674(00)81363-x. [DOI] [PubMed] [Google Scholar]
  27. Neyts J., Snoeck R., Schols D., Balzarini J., Esko J. D., Van Schepdael A., De Clercq E. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology. 1992 Jul;189(1):48–58. doi: 10.1016/0042-6822(92)90680-n. [DOI] [PubMed] [Google Scholar]
  28. Ohki S., Arnold K., Srinivasakumar N., Flanagan T. D. Effect of anionic polymers on fusion of Sendai virus with human erythrocyte ghosts. Antiviral Res. 1992 Jun;18(2):163–177. doi: 10.1016/0166-3542(92)90036-5. [DOI] [PubMed] [Google Scholar]
  29. Oyan A. M., Dolter K. E., Langeland N., Goins W. F., Glorioso J. C., Haarr L., Crumpacker C. S. Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C. J Virol. 1993 May;67(5):2434–2441. doi: 10.1128/jvi.67.5.2434-2441.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sears A. E., McGwire B. S., Roizman B. Infection of polarized MDCK cells with herpes simplex virus 1: two asymmetrically distributed cell receptors interact with different viral proteins. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5087–5091. doi: 10.1073/pnas.88.12.5087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seidel-Dugan C., Ponce de Leon M., Friedman H. M., Fries L. F., Frank M. M., Cohen G. H., Eisenberg R. J. C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol. 1988 Nov;62(11):4027–4036. doi: 10.1128/jvi.62.11.4027-4036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shieh M. T., Spear P. G. Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J Virol. 1994 Feb;68(2):1224–1228. doi: 10.1128/jvi.68.2.1224-1228.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smiley M. L., Friedman H. M. Binding of complement component C3b to glycoprotein C is modulated by sialic acid on herpes simplex virus type 1-infected cells. J Virol. 1985 Sep;55(3):857–861. doi: 10.1128/jvi.55.3.857-861.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stuve L. L., Brown-Shimer S., Pachl C., Najarian R., Dina D., Burke R. L. Structure and expression of the herpes simplex virus type 2 glycoprotein gB gene. J Virol. 1987 Feb;61(2):326–335. doi: 10.1128/jvi.61.2.326-335.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Subramanian G., McClain D. S., Perez A., Fuller A. O. Swine testis cells contain functional heparan sulfate but are defective in entry of herpes simplex virus. J Virol. 1994 Sep;68(9):5667–5676. doi: 10.1128/jvi.68.9.5667-5676.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tal-Singer R., Seidel-Dugan C., Fries L., Huemer H. P., Eisenberg R. J., Cohen G. H., Friedman H. M. Herpes simplex virus glycoprotein C is a receptor for complement component iC3b. J Infect Dis. 1991 Oct;164(4):750–753. doi: 10.1093/infdis/164.4.750. [DOI] [PubMed] [Google Scholar]
  38. Thiele B., Steinbach F. Dextran sulphate induces a PKC and actin independent internalisation of CD4. Immunol Lett. 1994 Sep;42(1-2):105–110. doi: 10.1016/0165-2478(94)90044-2. [DOI] [PubMed] [Google Scholar]
  39. Tokuda H., Masuda S., Takakura Y., Sezaki H., Hashida M. Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):18–24. doi: 10.1006/bbrc.1993.2210. [DOI] [PubMed] [Google Scholar]
  40. Vahlne A., Svennerholm B., Lycke E. Evidence for herpes simplex virus type-selective receptors on cellular plasma membranes. J Gen Virol. 1979 Jul;44(1):217–225. doi: 10.1099/0022-1317-44-1-217. [DOI] [PubMed] [Google Scholar]
  41. Vahlne A., Svennerholm B., Sandberg M., Hamberger A., Lycke E. Differences in attachment between herpes simplex type 1 and type 2 viruses to neurons and glial cells. Infect Immun. 1980 Jun;28(3):675–680. doi: 10.1128/iai.28.3.675-680.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xu X., Remold H. G., Caulfield J. P. Potential role for scavenger receptors of human monocytes in the killing of Schistosoma mansoni. Am J Pathol. 1993 Mar;142(3):685–689. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES