Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):259–266. doi: 10.1128/jvi.71.1.259-266.1997

A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity.

L Delamarre 1, A R Rosenberg 1, C Pique 1, D Pham 1, M C Dokhélar 1
PMCID: PMC191046  PMID: 8985345

Abstract

Human T-leukemia virus type 1 (HTLV-1) envelope glycoproteins play a major role in viral transmission, which in the case of this virus occurs almost exclusively via cell-to-cell contact. Until very recently, the lack of an HTLV-1 infectivity assay precluded the determination of the HTLV-1 protein domains required for infectivity. Here, we describe an assay which allows the quantitative evaluation of HTLV-1 cell-to-cell transmission in a single round of infection. Using this assay, we demonstrate that in this system, cell-to-cell transmission is at least 100 times more efficient than transmission with free viral particles. We have examined 46 surface (SU) glycoprotein mutants in order to define the amino acids of the HTLV-1 SU glycoprotein required for full infectivity. We demonstrate that these amino acids are distributed along the entire length of the SU glycoprotein, including the N-terminus and C-terminus regions, which have not been previously defined as being important for HTLV-1 glycoprotein function. For most of the mutated glycoproteins, the capacity to mediate cell-to-cell transmission is correlated with the ability to induce formation of syncytia. This result indicates that the fusion capacity is the main factor responsible for infectivity mediated by the HTLV-1 SU envelope glycoprotein, as is the case for other retroviral glycoproteins. However, other factors must also intervene, since two of the mutated glycoproteins were correctly fusogenic but could not mediate cell-to-cell transmission. Existence of this phenotype shows that capacity for fusion is not sufficient to confer infectivity, even in cell-to-cell transmission, and could suggest that postfusion events involve the SU.

Full Text

The Full Text of this article is available as a PDF (470.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  3. Ciminale V., Pavlakis G. N., Derse D., Cunningham C. P., Felber B. K. Complex splicing in the human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins produced by HTLV type I. J Virol. 1992 Mar;66(3):1737–1745. doi: 10.1128/jvi.66.3.1737-1745.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clapham P., Nagy K., Cheingsong-Popov R., Exley M., Weiss R. A. Productive infection and cell-free transmission of human T-cell leukemia virus in a nonlymphoid cell line. Science. 1983 Dec 9;222(4628):1125–1127. doi: 10.1126/science.6316502. [DOI] [PubMed] [Google Scholar]
  5. Copeland K. F., Haaksma A. G., Derse D., Heeney J. L. Detection of human T-cell leukaemia virus 1 permissive cells using cell lines producing selectable recombinant virions. J Virol Methods. 1994 Dec;50(1-3):219–225. doi: 10.1016/0166-0934(94)90178-3. [DOI] [PubMed] [Google Scholar]
  6. Cullen B. R. Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol. 1987;152:684–704. doi: 10.1016/0076-6879(87)52074-2. [DOI] [PubMed] [Google Scholar]
  7. Delamarre L., Pique C., Pham D., Tursz T., Dokhélar M. C. Identification of functional regions in the human T-cell leukemia virus type I SU glycoprotein. J Virol. 1994 Jun;68(6):3544–3549. doi: 10.1128/jvi.68.6.3544-3549.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denesvre C., Sonigo P., Corbin A., Ellerbrok H., Sitbon M. Influence of transmembrane domains on the fusogenic abilities of human and murine leukemia retrovirus envelopes. J Virol. 1995 Jul;69(7):4149–4157. doi: 10.1128/jvi.69.7.4149-4157.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Derse D., Mikovits J., Polianova M., Felber B. K., Ruscetti F. Virions released from cells transfected with a molecular clone of human T-cell leukemia virus type I give rise to primary and secondary infections of T cells. J Virol. 1995 Mar;69(3):1907–1912. doi: 10.1128/jvi.69.3.1907-1912.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Desgranges C., Souche S., Vernant J. C., Smadja D., Vahlne A., Horal P. Identification of novel neutralization-inducing regions of the human T cell lymphotropic virus type I envelope glycoproteins with human HTLV-I-seropositive sera. AIDS Res Hum Retroviruses. 1994 Feb;10(2):163–173. doi: 10.1089/aid.1994.10.163. [DOI] [PubMed] [Google Scholar]
  11. Dokhelar M. C., Pickford H., Sodroski J., Haseltine W. A. The potential for homeostatic regulation of the X region proteins of the human T cell leukemia virus type I. J Acquir Immune Defic Syndr. 1989;2(6):588–594. [PubMed] [Google Scholar]
  12. Fan N., Gavalchin J., Paul B., Wells K. H., Lane M. J., Poiesz B. J. Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I. J Clin Microbiol. 1992 Apr;30(4):905–910. doi: 10.1128/jcm.30.4.905-910.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freed E. O., Myers D. J. Identification and characterization of fusion and processing domains of the human immunodeficiency virus type 2 envelope glycoprotein. J Virol. 1992 Sep;66(9):5472–5478. doi: 10.1128/jvi.66.9.5472-5478.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallaher W. R., Ball J. M., Garry R. F., Martin-Amedee A. M., Montelaro R. C. A general model for the surface glycoproteins of HIV and other retroviruses. AIDS Res Hum Retroviruses. 1995 Feb;11(2):191–202. doi: 10.1089/aid.1995.11.191. [DOI] [PubMed] [Google Scholar]
  15. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  16. Harrison T., Graham F., Williams J. Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology. 1977 Mar;77(1):319–329. doi: 10.1016/0042-6822(77)90428-7. [DOI] [PubMed] [Google Scholar]
  17. Helenius A. Alphavirus and flavivirus glycoproteins: structures and functions. Cell. 1995 Jun 2;81(5):651–653. doi: 10.1016/0092-8674(95)90523-5. [DOI] [PubMed] [Google Scholar]
  18. Helseth E., Kowalski M., Gabuzda D., Olshevsky U., Haseltine W., Sodroski J. Rapid complementation assays measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants. J Virol. 1990 May;64(5):2416–2420. doi: 10.1128/jvi.64.5.2416-2420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hunter E., Swanstrom R. Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol. 1990;157:187–253. doi: 10.1007/978-3-642-75218-6_7. [DOI] [PubMed] [Google Scholar]
  20. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  21. Kimata J. T., Wong F. H., Wang J. J., Ratner L. Construction and characterization of infectious human T-cell leukemia virus type 1 molecular clones. Virology. 1994 Nov 1;204(2):656–664. doi: 10.1006/viro.1994.1581. [DOI] [PubMed] [Google Scholar]
  22. Kleinman S., Swanson P., Allain J. P., Lee H. Transfusion transmission of human T-lymphotropic virus types I and II: serologic and polymerase chain reaction results in recipients identified through look-back investigations. Transfusion. 1993 Jan;33(1):14–18. doi: 10.1046/j.1537-2995.1993.33193142303.x. [DOI] [PubMed] [Google Scholar]
  23. Kuroki M., Nakamura M., Itoyama Y., Tanaka Y., Shiraki H., Baba E., Esaki T., Tatsumoto T., Nagafuchi S., Nakano S. Identification of new epitopes recognized by human monoclonal antibodies with neutralizing and antibody-dependent cellular cytotoxicity activities specific for human T cell leukemia virus type 1. J Immunol. 1992 Aug 1;149(3):940–948. [PubMed] [Google Scholar]
  24. Landau N. R., Page K. A., Littman D. R. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol. 1991 Jan;65(1):162–169. doi: 10.1128/jvi.65.1.162-169.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manns A., Wilks R. J., Murphy E. L., Haynes G., Figueroa J. P., Barnett M., Hanchard B., Blattner W. A. A prospective study of transmission by transfusion of HTLV-I and risk factors associated with seroconversion. Int J Cancer. 1992 Jul 30;51(6):886–891. doi: 10.1002/ijc.2910510609. [DOI] [PubMed] [Google Scholar]
  26. McAllister R. M., Gardner M. B., Greene A. E., Bradt C., Nichols W. W., Landing B. H. Cultivation in vitro of cells derived from a human osteosarcoma. Cancer. 1971 Feb;27(2):397–402. doi: 10.1002/1097-0142(197102)27:2<397::aid-cncr2820270224>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  27. Miyamoto K., Tomita N., Ishii A., Nishizaki T., Kitajima K., Tanaka T., Nakamura T., Watanabe S., Oda T. Transformation of ATLA-negative leukocytes by blood components from anti-ATLA-positive donors in vitro. Int J Cancer. 1984 Jun 15;33(6):721–725. doi: 10.1002/ijc.2910330603. [DOI] [PubMed] [Google Scholar]
  28. Okochi K., Sato H., Hinuma Y. A retrospective study on transmission of adult T cell leukemia virus by blood transfusion: seroconversion in recipients. Vox Sang. 1984;46(5):245–253. doi: 10.1111/j.1423-0410.1984.tb00083.x. [DOI] [PubMed] [Google Scholar]
  29. Palker T. J., Riggs E. R., Spragion D. E., Muir A. J., Scearce R. M., Randall R. R., McAdams M. W., McKnight A., Clapham P. R., Weiss R. A. Mapping of homologous, amino-terminal neutralizing regions of human T-cell lymphotropic virus type I and II gp46 envelope glycoproteins. J Virol. 1992 Oct;66(10):5879–5889. doi: 10.1128/jvi.66.10.5879-5889.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pique C., Pham D., Tursz T., Dokhélar M. C. Human T-cell leukemia virus type I envelope protein maturation process: requirements for syncytium formation. J Virol. 1992 Feb;66(2):906–913. doi: 10.1128/jvi.66.2.906-913.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pique C., Pham D., Tursz T., Dokhélar M. C. The cytoplasmic domain of the human T-cell leukemia virus type I envelope can modulate envelope functions in a cell type-dependent manner. J Virol. 1993 Jan;67(1):557–561. doi: 10.1128/jvi.67.1.557-561.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pique C., Tursz T., Dokhelar M. C. Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation? EMBO J. 1990 Dec;9(13):4243–4248. doi: 10.1002/j.1460-2075.1990.tb07872.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Popovic M., Sarin P. S., Robert-Gurroff M., Kalyanaraman V. S., Mann D., Minowada J., Gallo R. C. Isolation and transmission of human retrovirus (human t-cell leukemia virus). Science. 1983 Feb 18;219(4586):856–859. doi: 10.1126/science.6600519. [DOI] [PubMed] [Google Scholar]
  34. Rice N. R., Stephens R. M., Couez D., Deschamps J., Kettmann R., Burny A., Gilden R. V. The nucleotide sequence of the env gene and post-env region of bovine leukemia virus. Virology. 1984 Oct 15;138(1):82–93. doi: 10.1016/0042-6822(84)90149-1. [DOI] [PubMed] [Google Scholar]
  35. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. doi: 10.1073/pnas.82.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shimotohno K., Takahashi Y., Shimizu N., Gojobori T., Golde D. W., Chen I. S., Miwa M., Sugimura T. Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene. Proc Natl Acad Sci U S A. 1985 May;82(10):3101–3105. doi: 10.1073/pnas.82.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sodroski J., Patarca R., Perkins D., Briggs D., Lee T. H., Essex M., Coligan J., Wong-Staal F., Gallo R. C., Haseltine W. A. Sequence of the envelope glycoprotein gene of type II human T lymphotropic virus. Science. 1984 Jul 27;225(4660):421–424. doi: 10.1126/science.6204380. [DOI] [PubMed] [Google Scholar]
  39. Sommerfelt M. A., Weiss R. A. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990 May;176(1):58–69. doi: 10.1016/0042-6822(90)90230-o. [DOI] [PubMed] [Google Scholar]
  40. Tanaka Y., Yasumoto M., Nyunoya H., Ogura T., Kikuchi M., Shimotohno K., Shiraki H., Kuroda N., Shida H., Tozawa H. Generation and characterization of monoclonal antibodies against multiple epitopes on the C-terminal half of envelope gp46 of human T-cell leukemia virus type-I (HTLV-I). Int J Cancer. 1990 Oct 15;46(4):675–681. doi: 10.1002/ijc.2910460421. [DOI] [PubMed] [Google Scholar]
  41. Tanaka Y., Zeng L., Shiraki H., Shida H., Tozawa H. Identification of a neutralization epitope on the envelope gp46 antigen of human T cell leukemia virus type I and induction of neutralizing antibody by peptide immunization. J Immunol. 1991 Jul 1;147(1):354–360. [PubMed] [Google Scholar]
  42. Thali M., Furman C., Ho D. D., Robinson J., Tilley S., Pinter A., Sodroski J. Discontinuous, conserved neutralization epitopes overlapping the CD4-binding region of human immunodeficiency virus type 1 gp120 envelope glycoprotein. J Virol. 1992 Sep;66(9):5635–5641. doi: 10.1128/jvi.66.9.5635-5641.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thali M., Olshevsky U., Furman C., Gabuzda D., Posner M., Sodroski J. Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody. J Virol. 1991 Nov;65(11):6188–6193. doi: 10.1128/jvi.65.11.6188-6193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vile R. G., Schulz T. F., Danos O. F., Collins M. K., Weiss R. A. A murine cell line producing HTLV-I pseudotype virions carrying a selectable marker gene. Virology. 1991 Jan;180(1):420–424. doi: 10.1016/0042-6822(91)90050-l. [DOI] [PubMed] [Google Scholar]
  45. Watanabe T., Seiki M., Tsujimoto H., Miyoshi I., Hayami M., Yoshida M. Sequence homology of the simian retrovirus genome with human T-cell leukemia virus type I. Virology. 1985 Jul 15;144(1):59–65. doi: 10.1016/0042-6822(85)90304-6. [DOI] [PubMed] [Google Scholar]
  46. Wilson C., Reitz M. S., Okayama H., Eiden M. V. Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. 1989 May;63(5):2374–2378. doi: 10.1128/jvi.63.5.2374-2378.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wyatt R., Moore J., Accola M., Desjardin E., Robinson J., Sodroski J. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J Virol. 1995 Sep;69(9):5723–5733. doi: 10.1128/jvi.69.9.5723-5733.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamamoto N., Okada M., Koyanagi Y., Kannagi M., Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science. 1982 Aug 20;217(4561):737–739. doi: 10.1126/science.6980467. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES