Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):419–426. doi: 10.1128/jvi.71.1.419-426.1997

Identification of a T-helper cell epitope on the rotavirus VP6 protein.

D M Baños 1, S Lopez 1, C F Arias 1, F R Esquivel 1
PMCID: PMC191067  PMID: 8985366

Abstract

In this work, we have studied the T-helper (Th)-cell response against rotavirus, in a mouse model. Adult BALB/c mice were inoculated parenterally with porcine rotavirus YM, and the Th-cell response from spleen cells against the virus and two overlapping fragments of the major capsid protein VP6 (VP6(1-192) and VP6(171-397)) were evaluated in vitro. The Th cells recognized the YM virus and the two protein fragments, suggesting that there are at least two Th-cell epitopes on the VP6 molecule. To study the specificity of Th cells against VP6 at the clonal level, we established two Th-cell hybridomas cross-reactive for the VP6 protein of rotavirus strains YM and SA11. Both hybridomas recognized the VP6(171-397) polypeptide, and a synthetic peptide comprising the amino acids 289 to 302 (RLSFQLVRPPNMTP) of YM VP6 in the context of the major histocompatibility complex class II IEd molecule. The Th-cell hybridomas recognized rotavirus VP6 in a highly cross-reactive fashion, since they could be stimulated by eight different strains of rotavirus, including the murine rotavirus EDIM, that represent five G serotypes and at least two subgroups. The amino acid sequence of the VP6 epitope is highly conserved in most group A rotavirus strains sequenced so far. On the other hand, it was found that Th cells specific for the VP6 epitope may constitute an important proportion of the total polyclonal Th-cell response against rotavirus YM in spleen cells. These results demonstrate that VP6 can be a target for highly cross-reactive Th cells.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew M. E., Boyle D. B., Whitfeld P. L., Lockett L. J., Anthony I. D., Bellamy A. R., Both G. W. The immunogenicity of VP7, a rotavirus antigen resident in the endoplasmic reticulum, is enhanced by cell surface expression. J Virol. 1990 Oct;64(10):4776–4783. doi: 10.1128/jvi.64.10.4776-4783.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruce M. G., Campbell I., Xiong Y., Redmond M., Snodgrass D. R. Recognition of rotavirus antigens by mouse L3T4-positive T helper cells. J Gen Virol. 1994 Aug;75(Pt 8):1859–1866. doi: 10.1099/0022-1317-75-8-1859. [DOI] [PubMed] [Google Scholar]
  3. Burkhart C., Freer G., Castro R., Adorini L., Wiesmüller K. H., Zinkernagel R. M., Hengartner H. Characterization of T-helper epitopes of the glycoprotein of vesicular stomatitis virus. J Virol. 1994 Mar;68(3):1573–1580. doi: 10.1128/jvi.68.3.1573-1580.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burns J. W., Krishnaney A. A., Vo P. T., Rouse R. V., Anderson L. J., Greenberg H. B. Analyses of homologous rotavirus infection in the mouse model. Virology. 1995 Feb 20;207(1):143–153. doi: 10.1006/viro.1995.1060. [DOI] [PubMed] [Google Scholar]
  5. Burns J. W., Siadat-Pajouh M., Krishnaney A. A., Greenberg H. B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science. 1996 Apr 5;272(5258):104–107. doi: 10.1126/science.272.5258.104. [DOI] [PubMed] [Google Scholar]
  6. Coulson B. S., Grimwood K., Hudson I. L., Barnes G. L., Bishop R. F. Role of coproantibody in clinical protection of children during reinfection with rotavirus. J Clin Microbiol. 1992 Jul;30(7):1678–1684. doi: 10.1128/jcm.30.7.1678-1684.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol. 1994;12:259–293. doi: 10.1146/annurev.iy.12.040194.001355. [DOI] [PubMed] [Google Scholar]
  8. Eisenlohr L. C., Yewdell J. W., Bennink J. R. Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med. 1992 Feb 1;175(2):481–487. doi: 10.1084/jem.175.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Espejo R. T., López S., Arias C. Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J Virol. 1981 Jan;37(1):156–160. doi: 10.1128/jvi.37.1.156-160.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Estes M. K., Mason B. B., Crawford S., Cohen J. Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Res. 1984 Feb 24;12(4):1875–1887. doi: 10.1093/nar/12.4.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feng N., Burns J. W., Bracy L., Greenberg H. B. Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. J Virol. 1994 Dec;68(12):7766–7773. doi: 10.1128/jvi.68.12.7766-7773.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Franco M. A., Greenberg H. B. Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J Virol. 1995 Dec;69(12):7800–7806. doi: 10.1128/jvi.69.12.7800-7806.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gao X. M., Liew F. Y., Tite J. P. Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus. J Immunol. 1989 Nov 1;143(9):3007–3014. [PubMed] [Google Scholar]
  14. Germain R. N., Ashwell J. D., Lechler R. I., Margulies D. H., Nickerson K. M., Suzuki G., Tou J. Y. "Exon-shuffling" maps control of antibody- and T-cell-recognition sites to the NH2-terminal domain of the class II major histocompatibility polypeptide A beta. Proc Natl Acad Sci U S A. 1985 May;82(9):2940–2944. doi: 10.1073/pnas.82.9.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorziglia M., Hoshino Y., Nishikawa K., Maloy W. L., Jones R. W., Kapikian A. Z., Chanock R. M. Comparative sequence analysis of the genomic segment 6 of four rotaviruses each with a different subgroup specificity. J Gen Virol. 1988 Jul;69(Pt 7):1659–1669. doi: 10.1099/0022-1317-69-7-1659. [DOI] [PubMed] [Google Scholar]
  16. Gorziglia M., Larrea C., Liprandi F., Esparza J. Biochemical evidence for the oligomeric (possibly trimeric) structure of the major inner capsid polypeptide (45K) of rotaviruses. J Gen Virol. 1985 Sep;66(Pt 9):1889–1900. doi: 10.1099/0022-1317-66-9-1889. [DOI] [PubMed] [Google Scholar]
  17. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965–968. doi: 10.1126/science.8178155. [DOI] [PubMed] [Google Scholar]
  18. Jackson D. C., Drummer H. E., Brown L. E. Conserved determinants for CD4+ T cells within the light chain of the H3 hemagglutinin molecule of influenza virus. Virology. 1994 Feb;198(2):613–623. doi: 10.1006/viro.1994.1073. [DOI] [PubMed] [Google Scholar]
  19. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lizano M., López S., Arias C. F. The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J Virol. 1991 Mar;65(3):1383–1391. doi: 10.1128/jvi.65.3.1383-1391.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. López S., Arias C. F. Sequence analysis of rotavirus YM VP6 and NS28 proteins. J Gen Virol. 1993 Jun;74(Pt 6):1223–1226. doi: 10.1099/0022-1317-74-6-1223. [DOI] [PubMed] [Google Scholar]
  24. López S., Espinosa R., Greenberg H. B., Arias C. F. Mapping the subgroup epitopes of rotavirus protein VP6. Virology. 1994 Oct;204(1):153–162. doi: 10.1006/viro.1994.1519. [DOI] [PubMed] [Google Scholar]
  25. Maeji N. J., Bray A. M., Geysen H. M. Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods. 1990 Nov 6;134(1):23–33. doi: 10.1016/0022-1759(90)90108-8. [DOI] [PubMed] [Google Scholar]
  26. Mahon B. P., Katrak K., Mills K. H. Antigenic sequences of poliovirus recognized by T cells: serotype-specific epitopes on VP1 and VP3 and cross-reactive epitopes on VP4 defined by using CD4+ T-cell clones. J Virol. 1992 Dec;66(12):7012–7020. doi: 10.1128/jvi.66.12.7012-7020.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mahon B. P., Katrak K., Nomoto A., Macadam A. J., Minor P. D., Mills K. H. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med. 1995 Apr 1;181(4):1285–1292. doi: 10.1084/jem.181.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matson D. O., O'Ryan M. L., Herrera I., Pickering L. K., Estes M. K. Fecal antibody responses to symptomatic and asymptomatic rotavirus infections. J Infect Dis. 1993 Mar;167(3):577–583. doi: 10.1093/infdis/167.3.577. [DOI] [PubMed] [Google Scholar]
  29. Matsui S. M., Offit P. A., Vo P. T., Mackow E. R., Benfield D. A., Shaw R. D., Padilla-Noriega L., Greenberg H. B. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4. J Clin Microbiol. 1989 Apr;27(4):780–782. doi: 10.1128/jcm.27.4.780-782.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McKean D. J., Infante A. J., Nilson A., Kimoto M., Fathman C. G., Walker E., Warner N. Major histocompatibility complex-restricted antigen presentation to antigen-reactive T cells by B lymphocyte tumor cells. J Exp Med. 1981 Nov 1;154(5):1419–1431. doi: 10.1084/jem.154.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McNeal M. M., Barone K. S., Rae M. N., Ward R. L. Effector functions of antibody and CD8+ cells in resolution of rotavirus infection and protection against reinfection in mice. Virology. 1995 Dec 20;214(2):387–397. doi: 10.1006/viro.1995.0048. [DOI] [PubMed] [Google Scholar]
  32. McNeal M. M., Sheridan J. F., Ward R. L. Active protection against rotavirus infection of mice following intraperitoneal immunization. Virology. 1992 Nov;191(1):150–157. doi: 10.1016/0042-6822(92)90176-p. [DOI] [PubMed] [Google Scholar]
  33. Melchers F., Zeuthen J., Gerhard W. Influenza virus-specific murine T cell hybridomas which recognize virus hemagglutinin in conjunction with H-2d and display helper functions for B cells. Curr Top Microbiol Immunol. 1982;100:153–163. doi: 10.1007/978-3-642-68586-6_18. [DOI] [PubMed] [Google Scholar]
  34. Midthun K., Kapikian A. Z. Rotavirus vaccines: an overview. Clin Microbiol Rev. 1996 Jul;9(3):423–434. doi: 10.1128/cmr.9.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Milich D. R., McLachlan A., Thornton G. B., Hughes J. L. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature. 1987 Oct 8;329(6139):547–549. doi: 10.1038/329547a0. [DOI] [PubMed] [Google Scholar]
  36. Müller W., Vandenabeele P. A T cell clone which responds to interleukin 2 but not to interleukin 4. Eur J Immunol. 1987 Apr;17(4):579–580. doi: 10.1002/eji.1830170424. [DOI] [PubMed] [Google Scholar]
  37. Offit P. A., Blavat G. Identification of the two rotavirus genes determining neutralization specificities. J Virol. 1986 Jan;57(1):376–378. doi: 10.1128/jvi.57.1.376-378.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Offit P. A., Hoffenberg E. J., Pia E. S., Panackal P. A., Hill N. L. Rotavirus-specific helper T cell responses in newborns, infants, children, and adults. J Infect Dis. 1992 Jun;165(6):1107–1111. doi: 10.1093/infdis/165.6.1107. [DOI] [PubMed] [Google Scholar]
  39. Offit P. A., Hoffenberg E. J., Santos N., Gouvea V. Rotavirus-specific humoral and cellular immune response after primary, symptomatic infection. J Infect Dis. 1993 Jun;167(6):1436–1440. doi: 10.1093/infdis/167.6.1436. [DOI] [PubMed] [Google Scholar]
  40. Oldham G., Bridger J. C., Howard C. J., Parsons K. R. In vivo role of lymphocyte subpopulations in the control of virus excretion and mucosal antibody responses of cattle infected with rotavirus. J Virol. 1993 Aug;67(8):5012–5019. doi: 10.1128/jvi.67.8.5012-5019.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Perkins D. L., Berriz G., Kamradt T., Smith J. A., Gefter M. L. Immunodominance: intramolecular competition between T cell epitopes. J Immunol. 1991 Apr 1;146(7):2137–2144. [PubMed] [Google Scholar]
  42. Prasad B. V., Chiu W. Structure of rotavirus. Curr Top Microbiol Immunol. 1994;185:9–29. doi: 10.1007/978-3-642-78256-5_2. [DOI] [PubMed] [Google Scholar]
  43. Prasad B. V., Wang G. J., Clerx J. P., Chiu W. Three-dimensional structure of rotavirus. J Mol Biol. 1988 Jan 20;199(2):269–275. doi: 10.1016/0022-2836(88)90313-0. [DOI] [PubMed] [Google Scholar]
  44. Rammensee H. G., Friede T., Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  45. Rötzschke O., Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol. 1994 Feb;6(1):45–51. doi: 10.1016/0952-7915(94)90032-9. [DOI] [PubMed] [Google Scholar]
  46. Sabara M., Ready K. F., Frenchick P. J., Babiuk L. A. Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein. J Gen Virol. 1987 Jan;68(Pt 1):123–133. doi: 10.1099/0022-1317-68-1-123. [DOI] [PubMed] [Google Scholar]
  47. Scherle P. A., Gerhard W. Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus-specific T-cell clones in vivo. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4446–4450. doi: 10.1073/pnas.85.12.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sette A., Buus S., Appella E., Smith J. A., Chesnut R., Miles C., Colon S. M., Grey H. M. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A. 1989 May;86(9):3296–3300. doi: 10.1073/pnas.86.9.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. Serum antibody responses to individual viral polypeptides in human rotavirus infections. J Gen Virol. 1987 Mar;68(Pt 3):643–651. doi: 10.1099/0022-1317-68-3-643. [DOI] [PubMed] [Google Scholar]
  50. Tarlow O., McCrae M. A. Nucleotide sequence of group antigen (VP6) of the UK tissue culture adapted strain of bovine rotavirus. Nucleic Acids Res. 1990 Aug 25;18(16):4921–4921. doi: 10.1093/nar/18.16.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Totterdell B. M., Banatvala J. E., Chrystie I. L., Ball G., Cubitt W. D. Systemic lymphoproliferative responses to rotavirus. J Med Virol. 1988 May;25(1):37–44. doi: 10.1002/jmv.1890250106. [DOI] [PubMed] [Google Scholar]
  52. Totterdell B. M., Patel S., Banatvala J. E., Chrystie I. L. Development of a lymphocyte transformation assay for rotavirus in whole blood and breast milk. J Med Virol. 1988 May;25(1):27–36. doi: 10.1002/jmv.1890250105. [DOI] [PubMed] [Google Scholar]
  53. Ward R. L., McNeal M. M., Sheridan J. F. Evidence that active protection following oral immunization of mice with live rotavirus is not dependent on neutralizing antibody. Virology. 1992 May;188(1):57–66. doi: 10.1016/0042-6822(92)90734-7. [DOI] [PubMed] [Google Scholar]
  54. White J., Blackman M., Bill J., Kappler J., Marrack P., Gold D. P., Born W. Two better cell lines for making hybridomas expressing specific T cell receptors. J Immunol. 1989 Sep 15;143(6):1822–1825. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES