Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1974 Oct;77(1):41–66.

Separation and Characterization of Human Neutrophil Granules

Burton C West, Alan S Rosenthal, Nancy A Gelb, Harry R Kimball
PMCID: PMC1910704  PMID: 4447123

Abstract

Human blood neutrophilic leukocytes were separated and purified by modifications of the Hypaque/Ficoll and dextran separation methods, resulting in a suspension which was greater than 96% neutrophils. Neutrophils were prepared in 0.34 M sucrose containing heparin and were clarified of nongranular debris by sequential passage through polycarbonate filters of pore size 5 μ and 2 μ. Isopycnic sucrose gradients of such filtrates revealed three major bands. The gradient separated fractions were studied by electron microscopy including peroxidase cytochemistry and by enzyme assay for myeloperoxidase (MPO), β-glucuronidase, muramidase alkaline phosphatase and acid phosphatase utilizing both p-nitrophenylphosphate (pnp) and β-glycerophosphate as substrates. Peroxidase-positive granules were observed at both density 1.22 (band A) and density 1.20 (band B). Three peroxidase-negative granules were identified: the round or oval peroxidase-negative granule of density 1.22 (band A) and two smaller granules, distinguishable by size and shape at density 1.18 (band C). Band C granules contain crystalloid inclusions. Peaks of muramidase activity coincided with bands A and C, suggesting the presence of muramidase in the peroxidase-negative granules of density 1.22 and in one or both of the peroxidase-negative granules at density 1.18. β-Glucuronidase was distributed like MPO, with a major peak in band B and a minor peak in band A. Acid β-glycerophosphatase was largely in band A. Acid pnp phosphatase was nonspecifically associated with soluble nongranular protein which always remained at the origin of sucrose gradients. Alkaline phosphatase was not granule associated and sedimented alone to density 1.145, which is highly suggestive of a cytoplasmic membrane localization for this enzyme.

Full text

PDF
41

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ackerman G. A., Clark M. A. Ultrastructural localization of peroxidase activity in normal human bone marrow cells. Z Zellforsch Mikrosk Anat. 1971;117(4):463–475. doi: 10.1007/BF00330708. [DOI] [PubMed] [Google Scholar]
  3. Avila J. L., Convit J. Studies on human polymorphonuclear leukocyte enzymes. I. Assay of acid hydrolases and other enzymes. Biochim Biophys Acta. 1973 Feb 15;293(2):397–408. doi: 10.1016/0005-2744(73)90347-1. [DOI] [PubMed] [Google Scholar]
  4. Avila J. L., Convit J. Studies on human polymorphonuclear leukocyte enzymes. II. Comparative study of the physical properties of primary and specific granules. Biochim Biophys Acta. 1973 Feb 15;293(2):409–423. doi: 10.1016/0005-2744(73)90348-3. [DOI] [PubMed] [Google Scholar]
  5. Baggiolini M., Hirsch J. G., De Duve C. Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes. J Cell Biol. 1970 Jun;45(3):586–597. doi: 10.1083/jcb.45.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baggiolini M., Hirsch J. G., De Duve C. Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation. J Cell Biol. 1969 Feb;40(2):529–541. doi: 10.1083/jcb.40.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Breton-Gorius J., Guichard J. Etude au microscope électronique de la localisation des peroxydases dans les cellules DE LA MOELLE OSSEUSE HUMAINE. Nouv Rev Fr Hematol. 1969 Sep-Oct;9(5):678–687. [PubMed] [Google Scholar]
  10. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  11. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chodirker W. B., Bock G. N., Vaughan J. H. Isolation of human PMN leukocytes and granules: observations on early blood diluion and on heparin. J Lab Clin Med. 1968 Jan;71(1):9–19. [PubMed] [Google Scholar]
  13. Daems W. T. On the fine structure of human neutrophilic leukocyte granules. J Ultrastruct Res. 1968 Aug;24(3):343–348. doi: 10.1016/s0022-5320(68)90070-1. [DOI] [PubMed] [Google Scholar]
  14. DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
  15. Dunn W. B., Hardin J. H., Spicer S. S. Ultrastructural localization of myeloperoxidase in human neutrophil and rabbit heterophil and eosinophil leukocytes. Blood. 1968 Dec;32(6):935–944. [PubMed] [Google Scholar]
  16. Enomoto T., Kitani T. [Electron microscopic studies on peroxidase and acid phosphatase reaction in human leukocytes (in normal and leukemic cells and on phagocytosis)]. Nihon Ketsueki Gakkai Zasshi. 1966 Aug;29(4):554–570. [PubMed] [Google Scholar]
  17. Farquhar M. G., Bainton D. F., Baggiolini M., de Duve C. Cytochemical localization of acid phosphatase activity in granule fractions from rabbit polymorphonuclear leukocytes. J Cell Biol. 1972 Jul;54(1):141–156. doi: 10.1083/jcb.54.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gerhardt B., Beevers H. Influence of sucrose on protein determination by the Lowry procedure. Anal Biochem. 1968 Aug;24(2):337–339. doi: 10.1016/0003-2697(68)90187-5. [DOI] [PubMed] [Google Scholar]
  19. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  20. HIRSCHHORN R., WEISSMANN G. ISOLATION AND PROPERTIES OF HUMAN LEUKOCYTE LYSOSOMES IN VITRO. Proc Soc Exp Biol Med. 1965 May;119:36–39. doi: 10.3181/00379727-119-30091. [DOI] [PubMed] [Google Scholar]
  21. Hempel K. H., Fernandez L. A., Persellin R. H. Effect of pregnancy sera on isolated lysosomes. Nature. 1970 Mar 7;225(5236):955–956. doi: 10.1038/225955a0. [DOI] [PubMed] [Google Scholar]
  22. Henson P. M. Interaction of cells with immune complexes: adherence, release of constituents, and tissue injury. J Exp Med. 1971 Sep 1;134(3 Pt 2):114s–135s. [PubMed] [Google Scholar]
  23. Hirsch J. G., Fedorko M. E. Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and "postfixation" in uranyl acetate. J Cell Biol. 1968 Sep;38(3):615–627. doi: 10.1083/jcb.38.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LITWACK G. Photometric determination of lysozyme activity. Proc Soc Exp Biol Med. 1955 Jul;89(3):401–403. doi: 10.3181/00379727-89-21824. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Leffell M. S., Spitznagel J. K. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun. 1972 Nov;6(5):761–765. doi: 10.1128/iai.6.5.761-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCall C. E., Katayama I., Cotran R. S., Finland M. Lysosomal and ultrastructural changes in human "toxic" neutrophils during bacterial infection. J Exp Med. 1969 Feb 1;129(2):267–293. doi: 10.1084/jem.129.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michell R. H., Karnovsky M. J., Karnovsky M. L. The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes. Biochem J. 1970 Jan;116(2):207–216. doi: 10.1042/bj1160207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Sullivan J., Mathison G. E. Interference by monosaccharides with the estimation of tyrosine and proteins using the Folin-Ciocalteu phenol reagent. Anal Biochem. 1970 Jun;35(2):540–542. doi: 10.1016/0003-2697(70)90221-6. [DOI] [PubMed] [Google Scholar]
  30. Olsson I. Isolation of human leukocyte granules using colloidal silica-polysaccharide density gradients. Exp Cell Res. 1969 Mar;54(3):325–330. doi: 10.1016/0014-4827(69)90210-9. [DOI] [PubMed] [Google Scholar]
  31. Root R. K., Rosenthal A. S., Balestra D. J. Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi Syndrome leukocytes. J Clin Invest. 1972 Mar;51(3):649–665. doi: 10.1172/JCI106854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schultz J., Corlin R., Oddi F., Kaminker K., Jones W. Myeloperoxidase of the leucocyte of normal human blood. 3. Isolation of the peroxidase granule. Arch Biochem Biophys. 1965 Jul;111(1):73–79. doi: 10.1016/0003-9861(65)90324-3. [DOI] [PubMed] [Google Scholar]
  33. Scott R. E., Horn R. G. Ultrastructural aspects of neutrophil granulocyte development in humans. Lab Invest. 1970 Aug;23(2):202–215. [PubMed] [Google Scholar]
  34. VALENTINE W. N., BECK W. S. Biochemical studies on leucocytes. I. Phosphatase activity in health, leucocytosis, and myelocytic leucemia. J Lab Clin Med. 1951 Jul;38(1):39–55. [PubMed] [Google Scholar]
  35. WROBLEWSKI F., LADUE J. S. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213. doi: 10.3181/00379727-90-21985. [DOI] [PubMed] [Google Scholar]
  36. Watanabe I., Donahue S., Hoggatt N. Method for electron microscopic studies of circulating human leukocytes and observations on their fine structure. J Ultrastruct Res. 1967 Oct 31;20(5):366–382. doi: 10.1016/s0022-5320(67)80106-0. [DOI] [PubMed] [Google Scholar]
  37. Wetzel B. K., Spicer S. S., Horn R. G. Fine structural localization of acid and alkaline phosphatases in cells of rabbit blood and bone marrow. J Histochem Cytochem. 1967 Jun;15(6):311–334. doi: 10.1177/15.6.311. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES