Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):562–568. doi: 10.1128/jvi.71.1.562-568.1997

Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins.

K V Pugachev 1, E S Abernathy 1, T K Frey 1
PMCID: PMC191085  PMID: 8985384

Abstract

A plasmid, Robo102, which contains a cDNA copy of the rubella virus (RUB) genomic RNA from which infectious transcripts can be synthesized in vitro, was recently developed (C. Y. Wang, G. Dominguez, and T. K. Frey, J. Virol. 68:3550-3557, 1994). To increase the specific infectivity of Robo102 transcripts (approximately 5 plaques/10 microg of transcripts), a modified reverse transcription-PCR method was used to amplify nearly 90% of the RUB genome in three fragments, which were then used to replace the corresponding fragments in Robo102. Replacement of a fragment covering nucleotides (nt) 5352 to 9759 of the RUB genome yielded a construct, Robo202, which produced highly infectious transcripts (10(4) plaques/microg), indicating the presence of an unrecognized deleterious mutation (or mutations) in this region of the Robo102 cDNA. Robo102 was based on the w-Therien strain of RUB, which forms opaque plaques in Vero cells, while the PCR replacement fragments were generated from a variant, f-Therien, which produces clear plaques in Vero cells. Although Robo202 contains over 4,000 nt from f-Therien, Robo202 virus produces opaque plaques. However, when the other two PCR fragments amplified from f-Therien (nt 1 to 1723 and nt 2800 to 5352) were introduced into Robo202, the resulting construct, Robo302, yielded transcripts that produced a virus that formed clear plaques. This indicates that the determinants of plaque morphology map to the regions of the genome covered by these two fragments, both of which are in the nonstructural open reading frame. Generation of Robo202/302 chimeras indicated that the most 5' terminal fragment (nt. 1 to 1723) had the greatest effect on plaque morphology. The plaque morphology was correlated with the ability of the viruses to kill infected cells. The only difference at the molecular level detected among the viruses was that the more cytopathic viruses produced more nonstructural proteins than did the less cytopathic viruses. This finding, as well as the mapping of the genetic determinants to the region of the genome encoding these proteins, indicates that the nonstructural proteins can mediate cell killing.

Full Text

The Full Text of this article is available as a PDF (335.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer J. C., Haenni A. L. Infectious transcripts and cDNA clones of RNA viruses. Virology. 1994 Feb;198(2):415–426. doi: 10.1006/viro.1994.1053. [DOI] [PubMed] [Google Scholar]
  3. Cheng S., Fockler C., Barnes W. M., Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5695–5699. doi: 10.1073/pnas.91.12.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cianetti L., Di Cristofaro A., Zappavigna V., Bottero L., Boccoli G., Testa U., Russo G., Boncinelli E., Peschle C. Molecular mechanisms underlying the expression of the human HOX-5.1 gene. Nucleic Acids Res. 1990 Aug 11;18(15):4361–4368. doi: 10.1093/nar/18.15.4361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Derdeyn C. A., Frey T. K. Characterization of defective-interfering RNAs of rubella virus generated during serial undiluted passage. Virology. 1995 Jan 10;206(1):216–226. doi: 10.1016/S0042-6822(95)80036-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dominguez G., Wang C. Y., Frey T. K. Sequence of the genome RNA of rubella virus: evidence for genetic rearrangement during togavirus evolution. Virology. 1990 Jul;177(1):225–238. doi: 10.1016/0042-6822(90)90476-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forng R. Y., Frey T. K. Identification of the rubella virus nonstructural proteins. Virology. 1995 Feb 1;206(2):843–853. doi: 10.1006/viro.1995.1007. [DOI] [PubMed] [Google Scholar]
  8. Frey T. K. Molecular biology of rubella virus. Adv Virus Res. 1994;44:69–160. doi: 10.1016/S0065-3527(08)60328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frolov I., Schlesinger S. Translation of Sindbis virus mRNA: analysis of sequences downstream of the initiating AUG codon that enhance translation. J Virol. 1996 Feb;70(2):1182–1190. doi: 10.1128/jvi.70.2.1182-1190.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frolov I., Schlesinger S. Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J Virol. 1994 Dec;68(12):8111–8117. doi: 10.1128/jvi.68.12.8111-8117.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gould J. J., Laurence G. D., Butler M. An unusual plaque variant of rubella virus. J Hyg (Lond) 1972 Mar;70(1):49–53. doi: 10.1017/s0022172400022087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemphill M. L., Forng R. Y., Abernathy E. S., Frey T. K. Time course of virus-specific macromolecular synthesis during rubella virus infection in Vero cells. Virology. 1988 Jan;162(1):65–75. doi: 10.1016/0042-6822(88)90395-9. [DOI] [PubMed] [Google Scholar]
  13. Miki N. P., Chantler J. K. Differential ability of wild-type and vaccine strains of rubella virus to replicate and persist in human joint tissue. Clin Exp Rheumatol. 1992 Jan-Feb;10(1):3–12. [PubMed] [Google Scholar]
  14. Oker-Blom C., Ulmanen I., Käriäinen L., Pettersson R. F. Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins. J Virol. 1984 Feb;49(2):403–408. doi: 10.1128/jvi.49.2.403-408.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pugachev K. V., Mason P. W., Frey T. K. Sindbis vectors suppress secretion of subviral particles of Japanese encephalitis virus from mammalian cells infected with SIN-JEV recombinants. Virology. 1995 May 10;209(1):155–166. doi: 10.1006/viro.1995.1239. [DOI] [PubMed] [Google Scholar]
  16. Rice C. M., Grakoui A., Galler R., Chambers T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989 Dec;1(3):285–296. [PubMed] [Google Scholar]
  17. Rice C. M., Levis R., Strauss J. H., Huang H. V. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol. 1987 Dec;61(12):3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang C. Y., Dominguez G., Frey T. K. Construction of rubella virus genome-length cDNA clones and synthesis of infectious RNA transcripts. J Virol. 1994 Jun;68(6):3550–3557. doi: 10.1128/jvi.68.6.3550-3557.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wolinsky J. S., McCarthy M., Allen-Cannady O., Moore W. T., Jin R., Cao S. N., Lovett A., Simmons D. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J Virol. 1991 Aug;65(8):3986–3994. doi: 10.1128/jvi.65.8.3986-3994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES