Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jan;71(1):853–857. doi: 10.1128/jvi.71.1.853-857.1997

Viral determinants of rotavirus pathogenicity in pigs: production of reassortants by asynchronous coinfection.

G I Tauscher 1, U Desselberger 1
PMCID: PMC191131  PMID: 8985430

Abstract

A porcine rotavirus (prv), variant 4F, isolated in tissue culture from the feces of a Chinese pig with diarrhea, was found to have become highly pathogenic when passaged in gnotobiotic piglets (J. C. Bridger, B. Burke, G. M. Beards, and U. Desselberger, J. Gen. Virol. 73:3011-3015, 1992). Comparison with the closely related pig-apathogenic variant prv 4S suggested the outer capsid protein VP4 (encoded by RNA 4) of prv 4F as a determinant for pathogenicity (B. Burke, J. C. Bridger, and U. Desselberger, J. Gen. Virol. 75:2205-2212, 1994; B. Burke, J. C. Bridger, and U. Desselberger, Virology 202:754-759, 1994). In order to provide more direct evidence, the pathogenic prv 4F variant which grows and forms plaques poorly in tissue culture was reassorted with the well-tissue-culture-adapted, pig-apathogenic bovine rotavirus (brv; UK Compton strain). After asynchronous coinfection of cell cultures (first prv 4F, followed by brv 6 to 12 h later), several reassortants were isolated containing RNA 4 of prv 4F either alone (isolate B-F4) or together with one or two other genes of 4F in the genetic background of brv. Backcrossing of the monoreassortant B-F4 with prv 4S yielded a monoreassortant, S-F4, which carries RNA 4 of the 4F variant in the genetic background of prv 4S. The in vitro growth characteristics of these reassortants were analyzed, and the roles of VP4 in plaque formation and growth kinetics in cell culture were confirmed. The monoreassortant S-F4 and the parental viruses prv 4F and prv 4S are currently being tested for pathogenicity in gnotobiotic piglets (J. C. Bridger, G. Tauscher, and U. Desselberger, unpublished data).

Full Text

The Full Text of this article is available as a PDF (222.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bridger J. C., Brown J. F. Antigenic and pathogenic relationships of three bovine rotaviruses and a porcine rotavirus. J Gen Virol. 1984 Jul;65(Pt 7):1151–1158. doi: 10.1099/0022-1317-65-7-1151. [DOI] [PubMed] [Google Scholar]
  2. Bridger J. C., Burke B., Beards G. M., Desselberger U. The pathogenicity of two porcine rotaviruses differing in their in vitro growth characteristics and genes 4. J Gen Virol. 1992 Nov;73(Pt 11):3011–3015. doi: 10.1099/0022-1317-73-11-3011. [DOI] [PubMed] [Google Scholar]
  3. Broome R. L., Vo P. T., Ward R. L., Clark H. F., Greenberg H. B. Murine rotavirus genes encoding outer capsid proteins VP4 and VP7 are not major determinants of host range restriction and virulence. J Virol. 1993 May;67(5):2448–2455. doi: 10.1128/jvi.67.5.2448-2455.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke B., Bridger J. C., Desselberger U. Temporal correlation between a single amino acid change in the VP4 of a porcine rotavirus and a marked change in pathogenicity. Virology. 1994 Aug 1;202(2):754–759. doi: 10.1006/viro.1994.1397. [DOI] [PubMed] [Google Scholar]
  5. Burke B., Desselberger U. Rotavirus pathogenicity. Virology. 1996 Apr 15;218(2):299–305. doi: 10.1006/viro.1996.0198. [DOI] [PubMed] [Google Scholar]
  6. Burke B., McCrae M. A., Desselberger U. Sequence analysis of two porcine rotaviruses differing in growth in vitro and in pathogenicity: distinct VP4 sequences and conservation of NS53, VP6 and VP7 genes. J Gen Virol. 1994 Sep;75(Pt 9):2205–2212. doi: 10.1099/0022-1317-75-9-2205. [DOI] [PubMed] [Google Scholar]
  7. Chen D., Burns J. W., Estes M. K., Ramig R. F. Phenotypes of rotavirus reassortants depend upon the recipient genetic background. Proc Natl Acad Sci U S A. 1989 May;86(10):3743–3747. doi: 10.1073/pnas.86.10.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Estes M. K., Graham D. Y., Mason B. B. Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol. 1981 Sep;39(3):879–888. doi: 10.1128/jvi.39.3.879-888.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorziglia M., Green K., Nishikawa K., Taniguchi K., Jones R., Kapikian A. Z., Chanock R. M. Sequence of the fourth gene of human rotaviruses recovered from asymptomatic or symptomatic infections. J Virol. 1988 Aug;62(8):2978–2984. doi: 10.1128/jvi.62.8.2978-2984.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graham A., Kudesia G., Allen A. M., Desselberger U. Reassortment of human rotavirus possessing genome rearrangements with bovine rotavirus: evidence for host cell selection. J Gen Virol. 1987 Jan;68(Pt 1):115–122. doi: 10.1099/0022-1317-68-1-115. [DOI] [PubMed] [Google Scholar]
  11. Greenberg H. B., Flores J., Kalica A. R., Wyatt R. G., Jones R. Gene coding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. J Gen Virol. 1983 Feb;64(Pt 2):313–320. doi: 10.1099/0022-1317-64-2-313. [DOI] [PubMed] [Google Scholar]
  12. Haddow J., Clark B., Ni Y., Desselberger U. Biological function of the rotavirus protein VP4: observations on porcine isolates from China. Med Microbiol Immunol. 1989;178(3):163–176. doi: 10.1007/BF00198015. [DOI] [PubMed] [Google Scholar]
  13. Hall G. A., Bridger J. C., Parsons K. R., Cook R. Variation in rotavirus virulence: a comparison of pathogenesis in calves between two rotaviruses of different virulence. Vet Pathol. 1993 May;30(3):223–233. doi: 10.1177/030098589303000302. [DOI] [PubMed] [Google Scholar]
  14. Hoshino Y., Sereno M. M., Midthun K., Flores J., Kapikian A. Z., Chanock R. M. Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8701–8704. doi: 10.1073/pnas.82.24.8701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalica A. R., Flores J., Greenberg H. B. Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology. 1983 Feb;125(1):194–205. doi: 10.1016/0042-6822(83)90073-9. [DOI] [PubMed] [Google Scholar]
  16. McCrae M. A., McCorquodale J. G. The molecular biology of rotaviruses. II. Identification of the protein-coding assignments of calf rotavirus genome RNA species. Virology. 1982 Mar;117(2):435–443. doi: 10.1016/0042-6822(82)90482-2. [DOI] [PubMed] [Google Scholar]
  17. Offit P. A., Blavat G., Greenberg H. B., Clark H. F. Molecular basis of rotavirus virulence: role of gene segment 4. J Virol. 1986 Jan;57(1):46–49. doi: 10.1128/jvi.57.1.46-49.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Offit P. A., Blavat G. Identification of the two rotavirus genes determining neutralization specificities. J Virol. 1986 Jan;57(1):376–378. doi: 10.1128/jvi.57.1.376-378.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Offit P. A., Clark H. F., Plotkin S. A. Response of mice to rotaviruses of bovine or primate origin assessed by radioimmunoassay, radioimmunoprecipitation, and plaque reduction neutralization. Infect Immun. 1983 Oct;42(1):293–300. doi: 10.1128/iai.42.1.293-300.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramig R. F. Superinfecting rotaviruses are not excluded from genetic interactions during asynchronous mixed infections in vitro. Virology. 1990 May;176(1):308–310. doi: 10.1016/0042-6822(90)90260-x. [DOI] [PubMed] [Google Scholar]
  21. Taniguchi K., Nishikawa K., Kobayashi N., Urasawa T., Wu H., Gorziglia M., Urasawa S. Differences in plaque size and VP4 sequence found in SA11 virus clones having simian authentic VP4. Virology. 1994 Jan;198(1):325–330. doi: 10.1006/viro.1994.1035. [DOI] [PubMed] [Google Scholar]
  22. de Zoysa I., Feachem R. G. Interventions for the control of diarrhoeal diseases among young children: rotavirus and cholera immunization. Bull World Health Organ. 1985;63(3):569–583. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES