Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):900–909. doi: 10.1128/jvi.71.2.900-909.1997

Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59.

P J Bonilla 1, S A Hughes 1, S R Weiss 1
PMCID: PMC191137  PMID: 8995606

Abstract

The 21.7-kb replicase locus of mouse hepatitis virus strain A59 (MHV-A59) encodes several putative functional domains, including three proteinase domains. Encoded closest to the 5' terminus of this locus is the first papain-like proteinase (PLP-1) (S. C. Baker et al., J. Virol. 67:6056-6063, 1993; H.-J. Lee et al., Virology 180:567-582, 1991). This cysteine proteinase is responsible for the in vitro cleavage of p28, a polypeptide that is also present in MHV-A59-infected cells. Cleavage at a second site was recently reported for this proteinase (P. J. Bonilla et al., Virology 209:489-497, 1995). This new cleavage site maps to the same region as the predicted site of the C terminus of p65, a viral polypeptide detected in infected cells. In this study, microsequencing analysis of the radiolabeled downstream cleavage product and deletion mutagenesis analysis were used to identify the scissile bond of the second cleavage site to between Ala832 and Gly833. The effects of mutations between the P5 and P2' positions on the processing at the second cleavage site were analyzed. Most substitutions at the P4, P3, P2, and P2' positions were permissive for cleavage. With the exceptions of a conservative P1 mutation, Ala832Gly, and a conservative P5 mutation, Arg828Lys, substitutions at the P5, P1, and P1' positions severely diminished second-site proteolysis. Mutants in which the p28 cleavage site (Gly247 / Val248) was replaced by the Ala832 / Gly833 cleavage site and vice versa were found to retain processing activity. Contrary to previous reports, we determined that the PLP-1 has the ability to process in trans at either the p28 site or both cleavage sites, depending on the choice of substrate. The results from this study suggest a greater role by the PLP-1 in the processing of the replicase locus in vivo.

Full Text

The Full Text of this article is available as a PDF (518.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agranovsky A. A., Koonin E. V., Boyko V. P., Maiss E., Frötschl R., Lunina N. A., Atabekov J. G. Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol protease. Virology. 1994 Jan;198(1):311–324. doi: 10.1006/viro.1994.1034. [DOI] [PubMed] [Google Scholar]
  2. Baker S. C., Shieh C. K., Soe L. H., Chang M. F., Vannier D. M., Lai M. M. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol. 1989 Sep;63(9):3693–3699. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker S. C., Yokomori K., Dong S., Carlisle R., Gorbalenya A. E., Koonin E. V., Lai M. M. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol. 1993 Oct;67(10):6056–6063. doi: 10.1128/jvi.67.10.6056-6063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonilla P. J., Gorbalenya A. E., Weiss S. R. Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology. 1994 Feb;198(2):736–740. doi: 10.1006/viro.1994.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonilla P. J., Hughes S. A., Piñn J. D., Weiss S. R. Characterization of the leader papain-like proteinase of MHV-A59: identification of a new in vitro cleavage site. Virology. 1995 Jun 1;209(2):489–497. doi: 10.1006/viro.1995.1281. [DOI] [PubMed] [Google Scholar]
  6. Bransom K. L., Wallace S. E., Dreher T. W. Identification of the cleavage site recognized by the turnip yellow mosaic virus protease. Virology. 1996 Mar 1;217(1):404–406. doi: 10.1006/viro.1996.0131. [DOI] [PubMed] [Google Scholar]
  7. Bredenbeek P. J., Pachuk C. J., Noten A. F., Charité J., Luytjes W., Weiss S. R., Spaan W. J. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 1990 Apr 11;18(7):1825–1832. doi: 10.1093/nar/18.7.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. A second proteinase encoded by a plant potyvirus genome. EMBO J. 1989 Feb;8(2):365–370. doi: 10.1002/j.1460-2075.1989.tb03386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen J. P., Strauss J. H., Strauss E. G., Frey T. K. Characterization of the rubella virus nonstructural protease domain and its cleavage site. J Virol. 1996 Jul;70(7):4707–4713. doi: 10.1128/jvi.70.7.4707-4713.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Choi G. H., Shapira R., Nuss D. L. Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1167–1171. doi: 10.1073/pnas.88.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denison M. R., Hughes S. A., Weiss S. R. Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology. 1995 Feb 20;207(1):316–320. doi: 10.1006/viro.1995.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Denison M. R., Zoltick P. W., Hughes S. A., Giangreco B., Olson A. L., Perlman S., Leibowitz J. L., Weiss S. R. Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology. 1992 Jul;189(1):274–284. doi: 10.1016/0042-6822(92)90703-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denison M. R., Zoltick P. W., Leibowitz J. L., Pachuk C. J., Weiss S. R. Identification of polypeptides encoded in open reading frame 1b of the putative polymerase gene of the murine coronavirus mouse hepatitis virus A59. J Virol. 1991 Jun;65(6):3076–3082. doi: 10.1128/jvi.65.6.3076-3082.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dong S., Baker S. C. Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology. 1994 Nov 1;204(2):541–549. doi: 10.1006/viro.1994.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eleouet J. F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology. 1995 Feb 1;206(2):817–822. doi: 10.1006/viro.1995.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989 Jun 26;17(12):4847–4861. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gorbalenya A. E., Koonin E. V., Lai M. M. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991 Aug 19;288(1-2):201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology. 1993 Aug;195(2):680–691. doi: 10.1006/viro.1993.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hughes S. A., Bonilla P. J., Weiss S. R. Identification of the murine coronavirus p28 cleavage site. J Virol. 1995 Feb;69(2):809–813. doi: 10.1128/jvi.69.2.809-813.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kadaré G., Rozanov M., Haenni A. L. Expression of the turnip yellow mosaic virus proteinase in Escherichia coli and determination of the cleavage site within the 206 kDa protein. J Gen Virol. 1995 Nov;76(Pt 11):2853–2857. doi: 10.1099/0022-1317-76-11-2853. [DOI] [PubMed] [Google Scholar]
  22. Khouri H. E., Vernet T., Ménard R., Parlati F., Laflamme P., Tessier D. C., Gour-Salin B., Thomas D. Y., Storer A. C. Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry. 1991 Sep 17;30(37):8929–8936. doi: 10.1021/bi00101a003. [DOI] [PubMed] [Google Scholar]
  23. Kim J. C., Spence R. A., Currier P. F., Lu X., Denison M. R. Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology. 1995 Apr 1;208(1):1–8. doi: 10.1006/viro.1995.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol. 1994 Sep;68(9):5677–5684. doi: 10.1128/jvi.68.9.5677-5684.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lawrence D. M., Rozanov M. N., Hillman B. I. Autocatalytic processing of the 223-kDa protein of blueberry scorch carlavirus by a papain-like proteinase. Virology. 1995 Feb 20;207(1):127–135. doi: 10.1006/viro.1995.1058. [DOI] [PubMed] [Google Scholar]
  26. Lee H. J., Shieh C. K., Gorbalenya A. E., Koonin E. V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M. M. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991 Feb;180(2):567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu D. X., Brierley I., Tibbles K. W., Brown T. D. A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. J Virol. 1994 Sep;68(9):5772–5780. doi: 10.1128/jvi.68.9.5772-5780.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liu D. X., Brown T. D. Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology. 1995 Jun 1;209(2):420–427. doi: 10.1006/viro.1995.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lu Y., Lu X., Denison M. R. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol. 1995 Jun;69(6):3554–3559. doi: 10.1128/jvi.69.6.3554-3559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shapira R., Nuss D. L. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. J Biol Chem. 1991 Oct 15;266(29):19419–19425. [PubMed] [Google Scholar]
  31. Snijder E. J., Wassenaar A. L., Spaan W. J. The 5' end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. J Virol. 1992 Dec;66(12):7040–7048. doi: 10.1128/jvi.66.12.7040-7048.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tibbles K. W., Brierley I., Cavanagh D., Brown T. D. Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. J Virol. 1996 Mar;70(3):1923–1930. doi: 10.1128/jvi.70.3.1923-1930.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weiss S. R., Hughes S. A., Bonilla P. J., Turner J. D., Leibowitz J. L., Denison M. R. Coronavirus polyprotein processing. Arch Virol Suppl. 1994;9:349–358. doi: 10.1007/978-3-7091-9326-6_35. [DOI] [PubMed] [Google Scholar]
  35. Yoo D., Parker M. D., Cox G. J., Babiuk L. A. Zinc-binding of the cysteine-rich domain encoded in the open reading frame of 1B of the RNA polymerase gene of coronavirus. Adv Exp Med Biol. 1995;380:437–442. doi: 10.1007/978-1-4615-1899-0_70. [DOI] [PubMed] [Google Scholar]
  36. Ziebuhr J., Herold J., Siddell S. G. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol. 1995 Jul;69(7):4331–4338. doi: 10.1128/jvi.69.7.4331-4338.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES