Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):934–940. doi: 10.1128/jvi.71.2.934-940.1997

Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus.

A Fraile 1, J L Alonso-Prados 1, M A Aranda 1, J J Bernal 1, J M Malpica 1, F García-Arenal 1
PMCID: PMC191141  PMID: 8995610

Abstract

Two hundred seventeen field isolates of cucumber mosaic cucumovirus (CMV), sampled from 11 natural populations, were typed by RNase protection assay (RPA) using probes from the genomic RNAs of strains in subgroup I and in subgroup II of CMV strains. Most (85%) of the analyzed isolates belonged to subgroup I. For these subgroup I isolates, only two clearly different RPA patterns, A and B, were found for each of four probes representing RNA1, RNA2, and each of the two open reading frames in RNA3. On the basis of these RPA patterns for each probe, different haplotypes were defined. The frequency composition for these haplotypes differed for the various analyzed populations, with no correlation with place or year of sampling. This genetic structure corresponds to a metapopulation with local extinctions and recolonizations. Most subgroup I isolates (73%) belonged to haplotypes with RPA pattern A (type 1) or B (type 2) for all four probes. A significant fraction of subgroup I isolates (16%) gave evidence of mixed infections with these two main types, from which genetic exchange could occur. Genetic exchange by segment reassortment was seen to occur: the fraction of reassortant isolates was 4%, reassortment did not occur at random, and reassortants did not become established in the population. Thus, there is evidence of selection against reassortment between types 1 and 2 of subgroup I isolates. Aphid transmission experiments with plants doubly infected with type 1 and type 2 isolates gave further evidence that reassortment is selected against in CMV. Genetic exchange by recombination was detected for RNA3, for which two RPA probes were used. Recombinant isolates amounted to 7% and also did not become established in CMV populations. Sequence analyses of regions of RNA1, RNA2, and RNA3 showed that there are strong constraints to maintain the encoded sequence and also gave evidence that these constraints may have been different during divergence of types 1 and 2 and, later on, during diversification of these two types. Constraints to the evolution of encoded proteins may be related to selection against genetic exchange. Our data, thus, do not favor current hypotheses that explain the evolution of multipartite viral genomes to promote genetic exchange.

Full Text

The Full Text of this article is available as a PDF (318.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aranda M. A., Fraile A., Garcia-Arenal F. Genetic variability and evolution of the satellite RNA of cucumber mosaic virus during natural epidemics. J Virol. 1993 Oct;67(10):5896–5901. doi: 10.1128/jvi.67.10.5896-5901.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaty B. J., Sundin D. R., Chandler L. J., Bishop D. H. Evolution of bunyaviruses by genome reassortment in dually infected mosquitoes (Aedes triseriatus). Science. 1985 Nov 1;230(4725):548–550. doi: 10.1126/science.4048949. [DOI] [PubMed] [Google Scholar]
  3. Chao L. Evolution of sex in RNA viruses. J Theor Biol. 1988 Jul 8;133(1):99–112. doi: 10.1016/s0022-5193(88)80027-4. [DOI] [PubMed] [Google Scholar]
  4. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  5. Chao L. Levels of selection, evolution of sex in RNA viruses, and the origin of life. J Theor Biol. 1991 Nov 21;153(2):229–246. doi: 10.1016/s0022-5193(05)80424-2. [DOI] [PubMed] [Google Scholar]
  6. Ding B., Li Q., Nguyen L., Palukaitis P., Lucas W. J. Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology. 1995 Mar 10;207(2):345–353. doi: 10.1006/viro.1995.1093. [DOI] [PubMed] [Google Scholar]
  7. Drake J. W. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4171–4175. doi: 10.1073/pnas.90.9.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duarte E., Clarke D., Moya A., Domingo E., Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6015–6019. doi: 10.1073/pnas.89.13.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fichot O., Girard M. An improved method for sequencing of RNA templates. Nucleic Acids Res. 1990 Oct 25;18(20):6162–6162. doi: 10.1093/nar/18.20.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fraile A., Malpica J. M., Aranda M. A., Rodríguez-Cerezo E., García-Arenal F. Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology. 1996 Sep 1;223(1):148–155. doi: 10.1006/viro.1996.0463. [DOI] [PubMed] [Google Scholar]
  11. Henderson W. W., Monroe M. C., St Jeor S. C., Thayer W. P., Rowe J. E., Peters C. J., Nichol S. T. Naturally occurring Sin Nombre virus genetic reassortants. Virology. 1995 Dec 20;214(2):602–610. doi: 10.1006/viro.1995.0071. [DOI] [PubMed] [Google Scholar]
  12. Ina Y., Gojobori T. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8388–8392. doi: 10.1073/pnas.91.18.8388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ina Y., Mizokami M., Ohba K., Gojobori T. Reduction of synonymous substitutions in the core protein gene of hepatitis C virus. J Mol Evol. 1994 Jan;38(1):50–56. doi: 10.1007/BF00175495. [DOI] [PubMed] [Google Scholar]
  14. Kao C. C., Ahlquist P. Identification of the domains required for direct interaction of the helicase-like and polymerase-like RNA replication proteins of brome mosaic virus. J Virol. 1992 Dec;66(12):7293–7302. doi: 10.1128/jvi.66.12.7293-7302.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan I. B., Shintaku M. H., Li Q., Zhang L., Marsh L. E., Palukaitis P. Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology. 1995 May 10;209(1):188–199. doi: 10.1006/viro.1995.1242. [DOI] [PubMed] [Google Scholar]
  16. Li W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. doi: 10.1007/BF02407308. [DOI] [PubMed] [Google Scholar]
  17. MULLER H. J. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. Mutat Res. 1964 May;106:2–9. doi: 10.1016/0027-5107(64)90047-8. [DOI] [PubMed] [Google Scholar]
  18. Marchoux G., Douine L., Quiot J. B. Comportement thermique différentiel de certaines souches du virus de la mosaïque du concombre. Hypothèse d'un mécanisme pléiotropique reliant plusieurs propriétés. C R Acad Sci Hebd Seances Acad Sci D. 1976 Nov 29;283(14):1601–1604. [PubMed] [Google Scholar]
  19. Martelli A., Pacifico P., Casadei G. Effect of alfuzosin on quality of life in benign prostatic hyperplasia patients: preliminary results. Italian Alfuzosin Co-Operative Group. Eur Urol. 1993;24 (Suppl 1):28–33. doi: 10.1159/000474371. [DOI] [PubMed] [Google Scholar]
  20. Nee S. On the evolution of sex in RNA viruses. J Theor Biol. 1989 Jun 8;138(3):407–412. doi: 10.1016/s0022-5193(89)80201-2. [DOI] [PubMed] [Google Scholar]
  21. Nee S. The evolution of multicompartmental genomes in viruses. J Mol Evol. 1987;25(4):277–281. doi: 10.1007/BF02603110. [DOI] [PubMed] [Google Scholar]
  22. Novella I. S., Elena S. F., Moya A., Domingo E., Holland J. J. Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. J Virol. 1995 May;69(5):2869–2872. doi: 10.1128/jvi.69.5.2869-2872.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Owen J., Palukaitis P. Characterization of cucumber mosaic virus. I. Molecular heterogeneity mapping of RNA 3 in eight CMV strains. Virology. 1988 Oct;166(2):495–502. doi: 10.1016/0042-6822(88)90520-x. [DOI] [PubMed] [Google Scholar]
  24. Owen J., Shintaku M., Aeschleman P., Ben Tahar S., Palukaitis P. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 3. J Gen Virol. 1990 Oct;71(Pt 10):2243–2249. doi: 10.1099/0022-1317-71-10-2243. [DOI] [PubMed] [Google Scholar]
  25. Palukaitis P., Roossinck M. J., Dietzgen R. G., Francki R. I. Cucumber mosaic virus. Adv Virus Res. 1992;41:281–348. doi: 10.1016/s0065-3527(08)60039-1. [DOI] [PubMed] [Google Scholar]
  26. Pamilo P., Bianchi N. O. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol. 1993 Mar;10(2):271–281. doi: 10.1093/oxfordjournals.molbev.a040003. [DOI] [PubMed] [Google Scholar]
  27. Perry K. L., Francki R. I. Insect-mediated transmission of mixed and reassorted cucumovirus genomic RNAs. J Gen Virol. 1992 Aug;73(Pt 8):2105–2114. doi: 10.1099/0022-1317-73-8-2105. [DOI] [PubMed] [Google Scholar]
  28. Perry K. L., Zhang L., Shintaku M. H., Palukaitis P. Mapping determinants in cucumber mosaic virus for transmission by Aphis gossypii. Virology. 1994 Dec;205(2):591–595. doi: 10.1006/viro.1994.1686. [DOI] [PubMed] [Google Scholar]
  29. Pressing J., Reanney D. C. Divided genomes and intrinsic noise. J Mol Evol. 1984;20(2):135–146. doi: 10.1007/BF02257374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rizzo T. M., Palukaitis P. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 1. J Gen Virol. 1989 Jan;70(Pt 1):1–11. doi: 10.1099/0022-1317-70-1-1. [DOI] [PubMed] [Google Scholar]
  31. Rizzo T. M., Palukaitis P. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 2. J Gen Virol. 1988 Aug;69(Pt 8):1777–1787. doi: 10.1099/0022-1317-69-8-1777. [DOI] [PubMed] [Google Scholar]
  32. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  33. Shintaku M. H., Zhang L., Palukaitis P. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell. 1992 Jul;4(7):751–757. doi: 10.1105/tpc.4.7.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Urquidi V., Bishop D. H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J Gen Virol. 1992 Sep;73(Pt 9):2255–2265. doi: 10.1099/0022-1317-73-9-2255. [DOI] [PubMed] [Google Scholar]
  35. White P. S., Morales F., Roossinck M. J. Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology. 1995 Feb 20;207(1):334–337. doi: 10.1006/viro.1995.1088. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES