Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):1052–1057. doi: 10.1128/jvi.71.2.1052-1057.1997

Direct ex vivo simian immunodeficiency virus (SIV)-specific cytotoxic activity detected from small intestine intraepithelial lymphocytes of SIV-infected macaques at an advanced stage of infection.

A Couëdel-Courteille 1, R Le Grand 1, M Tulliez 1, J G Guillet 1, A Venet 1
PMCID: PMC191156  PMID: 8995625

Abstract

Human immunodeficiency virus (HIV) induces a profound disorganization of the lymphoid tissues with marked abnormalities of the immune system at the terminal stage of infection. Since the digestive mucosal immune system is by far the largest lymphoid organ of the body, we attempted to evaluate its functional activity in advanced stages of simian immunodeficiency virus (SIV) infection in the SIV-macaque model of HIV infection. Two chronically intravenously SIV-infected macaques, including one at the AIDS stage, were studied. Intestinal intraepithelial lymphocytes (IEL) were isolated, analyzed, and compared to lymphocytes obtained from blood, spleen, and different lymph nodes: IEL were predominantly CD8+ T lymphocytes expressing the alphaE beta7 integrin and lacking the CD28 coactivatory molecule. A direct ex vivo SIV-specific cytotoxic activity was prominently found in the IEL of both macaques and was weaker or absent in the other sites. To our knowledge, this is the first report of SIV-specific cytotoxic activity from small intestine IEL in SIV-infected macaques. Considering the high similitude of the SIV-macaque model with the HIV infection in humans, these results may be highly important for the pathogenesis of HIV infection and more generally important for the characterization and function of digestive CD8+ IEL population.

Full Text

The Full Text of this article is available as a PDF (207.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Koenig S., Gendelman H. E., Daugherty D., Gattoni-Celli S., Fauci A. S., Martin M. A. Productive, persistent infection of human colorectal cell lines with human immunodeficiency virus. J Virol. 1987 Jan;61(1):209–213. doi: 10.1128/jvi.61.1.209-213.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berlin C., Berg E. L., Briskin M. J., Andrew D. P., Kilshaw P. J., Holzmann B., Weissman I. L., Hamann A., Butcher E. C. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993 Jul 16;74(1):185–195. doi: 10.1016/0092-8674(93)90305-a. [DOI] [PubMed] [Google Scholar]
  3. Bull D. M., Bookman M. A. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest. 1977 May;59(5):966–974. doi: 10.1172/JCI108719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butcher E. C., Picker L. J. Lymphocyte homing and homeostasis. Science. 1996 Apr 5;272(5258):60–66. doi: 10.1126/science.272.5258.60. [DOI] [PubMed] [Google Scholar]
  5. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  6. Cepek K. L., Shaw S. K., Parker C. M., Russell G. J., Morrow J. S., Rimm D. L., Brenner M. B. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994 Nov 10;372(6502):190–193. doi: 10.1038/372190a0. [DOI] [PubMed] [Google Scholar]
  7. Cerf-Bensussan N., Jarry A., Brousse N., Lisowska-Grospierre B., Guy-Grand D., Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol. 1987 Sep;17(9):1279–1285. doi: 10.1002/eji.1830170910. [DOI] [PubMed] [Google Scholar]
  8. Chen Z. W., Kou Z. C., Shen L., Regan J. D., Lord C. I., Halloran M., Lee-Parritz D., Fultz P. N., Letvin N. L. An acutely lethal simian immunodeficiency virus stimulates expansion of V beta 7- and V beta 14-expressing T lymphocytes. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7501–7505. doi: 10.1073/pnas.91.16.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choremi-Papadopoulou H., Viglis V., Gargalianos P., Kordossis T., Iniotaki-Theodoraki A., Kosmidis J. Downregulation of CD28 surface antigen on CD4+ and CD8+ T lymphocytes during HIV-1 infection. J Acquir Immune Defic Syndr. 1994 Mar;7(3):245–253. [PubMed] [Google Scholar]
  10. Fiorentino S., Dalod M., Olive D., Guillet J. G., Gomard E. Predominant involvement of CD8+CD28- lymphocytes in human immunodeficiency virus-specific cytotoxic activity. J Virol. 1996 Mar;70(3):2022–2026. doi: 10.1128/jvi.70.3.2022-2026.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gelfanov V., Gelfanova V., Lai Y. G., Liao N. S. Activated alpha beta-CD8+, but not alpha alpha-CD8+, TCR-alpha beta+ murine intestinal intraepithelial lymphocytes can mediate perforin-based cytotoxicity, whereas both subsets are active in Fas-based cytotoxicity. J Immunol. 1996 Jan 1;156(1):35–41. [PubMed] [Google Scholar]
  12. Gelfanov V., Lai Y. G., Gelfanova V., Dong J. Y., Su J. P., Liao N. S. Differential requirement of CD28 costimulation for activation of murine CD8+ intestinal intraepithelial lymphocyte subsets and lymph node cells. J Immunol. 1995 Jul 1;155(1):76–82. [PubMed] [Google Scholar]
  13. Gill M. J., Sutherland L. R., Church D. L. Gastrointestinal tissue cultures for HIV in HIV-infected/AIDS patients. The University of Calgary Gastrointestinal/HIV Study Group. AIDS. 1992 Jun;6(6):553–556. doi: 10.1097/00002030-199206000-00005. [DOI] [PubMed] [Google Scholar]
  14. Gummuluru S., Novembre F. J., Seshi B., Dewhurst S. SIVsmmPBj14 induces expression of a mucosal integrin on macaque lymphocytes. Virology. 1996 Jan 1;215(1):97–100. doi: 10.1006/viro.1996.0010. [DOI] [PubMed] [Google Scholar]
  15. Hamann A., Andrew D. P., Jablonski-Westrich D., Holzmann B., Butcher E. C. Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol. 1994 Apr 1;152(7):3282–3293. [PubMed] [Google Scholar]
  16. Haury M., Kasahara Y., Schaal S., Bucy R. P., Cooper M. D. Intestinal T lymphocytes in the chicken express an integrin-like antigen. Eur J Immunol. 1993 Feb;23(2):313–319. doi: 10.1002/eji.1830230202. [DOI] [PubMed] [Google Scholar]
  17. Heise C., Miller C. J., Lackner A., Dandekar S. Primary acute simian immunodeficiency virus infection of intestinal lymphoid tissue is associated with gastrointestinal dysfunction. J Infect Dis. 1994 May;169(5):1116–1120. doi: 10.1093/infdis/169.5.1116. [DOI] [PubMed] [Google Scholar]
  18. Heise C., Vogel P., Miller C. J., Lackner A., Dandekar S. Distribution of SIV infection in the gastrointestinal tract of rhesus macaques at early and terminal stages of AIDS. J Med Primatol. 1993 Feb-May;22(2-3):187–193. [PubMed] [Google Scholar]
  19. James S. P., Fiocchi C., Graeff A. S., Strober W. Phenotypic analysis of lamina propria lymphocytes. Predominance of helper-inducer and cytolytic T-cell phenotypes and deficiency of suppressor-inducer phenotypes in Crohn's disease and control patients. Gastroenterology. 1986 Dec;91(6):1483–1489. [PubMed] [Google Scholar]
  20. Letvin N. L., King N. W. Immunologic and pathologic manifestations of the infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Acquir Immune Defic Syndr. 1990;3(11):1023–1040. [PubMed] [Google Scholar]
  21. Lohman B. L., Miller C. J., McChesney M. B. Antiviral cytotoxic T lymphocytes in vaginal mucosa of simian immunodeficiency virus-infected rhesus macaques. J Immunol. 1995 Dec 15;155(12):5855–5860. [PMC free article] [PubMed] [Google Scholar]
  22. Margolick J. B., Muñoz A., Donnenberg A. D., Park L. P., Galai N., Giorgi J. V., O'Gorman M. R., Ferbas J. Failure of T-cell homeostasis preceding AIDS in HIV-1 infection. The Multicenter AIDS Cohort Study. Nat Med. 1995 Jul;1(7):674–680. doi: 10.1038/nm0795-674. [DOI] [PubMed] [Google Scholar]
  23. Miller C. J., Alexander N. J., Sutjipto S., Lackner A. A., Gettie A., Hendrickx A. G., Lowenstine L. J., Jennings M., Marx P. A. Genital mucosal transmission of simian immunodeficiency virus: animal model for heterosexual transmission of human immunodeficiency virus. J Virol. 1989 Oct;63(10):4277–4284. doi: 10.1128/jvi.63.10.4277-4284.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Monteiro J., Batliwalla F., Ostrer H., Gregersen P. K. Shortened telomeres in clonally expanded CD28-CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J Immunol. 1996 May 15;156(10):3587–3590. [PubMed] [Google Scholar]
  25. Neutra M. R., Pringault E., Kraehenbuhl J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300. doi: 10.1146/annurev.immunol.14.1.275. [DOI] [PubMed] [Google Scholar]
  26. Ohteki T., MacDonald H. R. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. Eur J Immunol. 1993 Jun;23(6):1251–1255. doi: 10.1002/eji.1830230609. [DOI] [PubMed] [Google Scholar]
  27. Pantaleo G., De Maria A., Koenig S., Butini L., Moss B., Baseler M., Lane H. C., Fauci A. S. CD8+ T lymphocytes of patients with AIDS maintain normal broad cytolytic function despite the loss of human immunodeficiency virus-specific cytotoxicity. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4818–4822. doi: 10.1073/pnas.87.12.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  29. Parker C. M., Cepek K. L., Russell G. J., Shaw S. K., Posnett D. N., Schwarting R., Brenner M. B. A family of beta 7 integrins on human mucosal lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1924–1928. doi: 10.1073/pnas.89.5.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphaël M., Mayaud C., Denis M., Guillon J. M., Debré P. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature. 1987 Jul 23;328(6128):348–351. doi: 10.1038/328348a0. [DOI] [PubMed] [Google Scholar]
  31. Saukkonen J. J., Kornfeld H., Berman J. S. Expansion of a CD8+CD28- cell population in the blood and lung of HIV-positive patients. J Acquir Immune Defic Syndr. 1993 Nov;6(11):1194–1204. [PubMed] [Google Scholar]
  32. Spira A. I., Marx P. A., Patterson B. K., Mahoney J., Koup R. A., Wolinsky S. M., Ho D. D. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996 Jan 1;183(1):215–225. doi: 10.1084/jem.183.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sprent J. Fate of H2-activated T lymphocytes in syngeneic hosts. I. Fate in lymphoid tissues and intestines traced with 3H-thymidine, 125I-deoxyuridine and 51chromium. Cell Immunol. 1976 Feb;21(2):278–302. doi: 10.1016/0008-8749(76)90057-5. [DOI] [PubMed] [Google Scholar]
  34. Tenner-Racz K. Human immunodeficiency virus associated changes in germinal centers of lymph nodes and relevance to impaired B-cell function. Lymphology. 1988 Mar;21(1):36–43. [PubMed] [Google Scholar]
  35. Tiisala S., Paavonen T., Renkonen R. Alpha E beta 7 and alpha 4 beta 7 integrins associated with intraepithelial and mucosal homing, are expressed on macrophages. Eur J Immunol. 1995 Feb;25(2):411–417. doi: 10.1002/eji.1830250216. [DOI] [PubMed] [Google Scholar]
  36. Ullrich R., Zeitz M., Heise W., L'age M., Höffken G., Riecken E. O. Small intestinal structure and function in patients infected with human immunodeficiency virus (HIV): evidence for HIV-induced enteropathy. Ann Intern Med. 1989 Jul 1;111(1):15–21. doi: 10.7326/0003-4819-111-1-15. [DOI] [PubMed] [Google Scholar]
  37. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. doi: 10.1038/328345a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES